Source code for pygcc.water_eos

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 17 16:02:22 2021

@author: adedapo.awolayo and Ben Tutolo, University of Calgary

Copyright (c) 2020 - 2021, Adedapo Awolayo and Ben Tutolo, University of Calgary

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.


Functions implemented here include water equation of state and dielectric properties
"""

import numpy as np, math
from scipy.optimize import root_scalar, fsolve, brentq
from scipy.linalg import lu_factor, lu_solve

eps = 2.220446049250313e-16
J_to_cal = 4.184
np.random.seed(4321)

[docs]def convert_temperature(T, Out_Unit = 'C'): """ This function converts temperatures from Celsius to Kelvin and vice-versa Parameters ---------- T : float, vector Temperature in °C or K \n Out_Unit : string Expected temperature unit (C or K) \n Returns ---------- T : float, vector Temperature in °C or K Examples ---------- >>> TC = 100; convert_temperature( TC, Out_Unit = 'K' ) 373.15 >>> TK = 520; convert_temperature( TK, Out_Unit = 'C' ) 246.85 """ #Accepted units for input and output are: unit_markers = ['C', 'K'] if not (Out_Unit in unit_markers): return None elif Out_Unit == 'K': return T + 273.15 elif Out_Unit == 'C': return T - 273.15
[docs]def derivative(f, a, method = 'central', h = 0.001): '''Compute the derivative of f, f'(a) with step size h. Parameters ---------- f : function Vectorized function of one variable a : number Compute derivative at x = a method : string Difference formula: 'forward', 'backward' or 'central' h : number Step size in difference formula Returns ------- float Difference formula: central: f(a + h) - f(a - h))/2h forward: f(a + h) - f(a))/h backward: f(a) - f(a-h))/h ''' if method == 'central': return (f(a + h) - f(a - h))/(2*h) elif method == 'forward': return (f(a + h) - f(a))/h elif method == 'backward': return (f(a) - f(a - h))/h else: raise ValueError("Method must be 'central', 'forward' or 'backward'.")
[docs]def readIAPWS95data(): """ returns all constants and coefficients needed for the IAPWS95 formulation, packed into a dictionary """ # Constants for IAPWS-95-Formulation R = 461.51805 # R: specific gas constant in J/(kg*K) Tc = 647.096 # T_c: critical temperature of water in K rhoc = 322 # rho_c: critical density of water in kg/m^3 Pc = 22.06400000000213 # P_c: critical pressure of water in MPa # n0(1:8) n0 = [-8.320446483749615, 6.683210527593193, 3.00632, 0.012436, 0.97315, 1.27950, 0.96956, 0.24873] # gamma0(1:8) gamma0 = [0.0, 0.0, 0.0, 1.28728967, 3.53734222, 7.74073708, 9.24437796, 27.5075105] # n(1:56) n = [0.12533547935523e-1, 0.78957634722828e+1, -0.87803203303561e+1, 0.31802509345418e+0, -0.26145533859358e+0, -0.78199751687981e-2, 0.88089493102134e-2, -0.66856572307965e+0, 0.20433810950965e+0, -0.66212605039687e-4, -0.19232721156002e+0, -0.25709043003438e+0, 0.16074868486251e+0, -0.40092828925807e-1, 0.39343422603254e-6, -0.75941377088144e-5, 0.56250979351888e-3, -0.15608652257135e-4, 0.11537996422951e-8, 0.36582165144204e-6, -0.13251180074668e-11, -0.62639586912454e-9, -0.10793600908932e+0, 0.17611491008752e-1, 0.22132295167546e+0, -0.40247669763528e+0, 0.58083399985759e+0, 0.49969146990806e-2, -0.31358700712549e-1, -0.74315929710341e+0, 0.47807329915480e+0, 0.20527940895948e-1, -0.13636435110343e+0, 0.14180634400617e-1, 0.83326504880713e-2, -0.29052336009585e-1, 0.38615085574206e-1, -0.20393486513704e-1, -0.16554050063734e-2, 0.19955571979541e-2, 0.15870308324157e-3, -0.16388568342530e-4, 0.43613615723811e-1, 0.34994005463765e-1, -0.76788197844621e-1, 0.22446277332006e-1, -0.62689710414685e-4, -0.55711118565645e-9, -0.19905718354408e+0, 0.31777497330738e+0, -0.11841182425981e+0, -0.31306260323435e+2, 0.31546140237781e+2, -0.25213154341695e+4, -0.14874640856724e+0, 0.31806110878444e+0] # c(1:51) c = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 6, 6, 6, 6] # d(1:54) d = [1, 1, 1, 2, 2, 3, 4, 1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 9, 10, 11, 13, 15, 1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 7, 9, 9, 9, 9, 9, 10, 10, 12, 3, 4, 4, 5, 14, 3, 6, 6, 6, 3, 3, 3] # t(1:54) t = [-0.5, 0.875, 1, 0.5, 0.75, 0.375, 1, 4, 6, 12, 1, 5, 4, 2, 13, 9, 3, 4, 11, 4, 13, 1, 7, 1, 9, 10, 10, 3, 7, 10, 10, 6, 10, 10, 1, 2, 3, 4, 8, 6, 9, 8, 16, 22, 23, 23, 10, 50, 44, 46, 50, 0, 1, 4] # alpha(52:54) alpha = [20, 20, 20] # beta(52:56) beta = [150, 150, 250, 0.3, 0.3] # gamma(52:54) gamma = [1.21, 1.21, 1.25] # epsilon(52:54) epsilon = [1, 1, 1] # a(55:56) a = [3.5, 3.5] # b(55:56) b = [0.85, 0.95] # A(55:56) A = [0.32, 0.32] # B(55:56) B = [0.2, 0.2] # C(55:56) C = [28, 32] # D(55:56) D = [700, 800] var = [R,Tc,Pc,rhoc,n0,gamma0,n,c,d,t,alpha,beta,gamma,epsilon,a,b,A,B,C,D] varname = ['R','Tc','Pc','rhoc','n0','gamma0','n','c','d','t','alpha','beta', 'gamma','epsilon','a','b','A','B','C','D'] coeffs = {} for i in range(len(var)): coeffs['%s' % varname[i]] = var[i] return coeffs
IAPWS95_COEFFS = readIAPWS95data()
[docs]class Dummy(object): """ Class of functions to evaluate the IAPWS95 equation of state for calculating thermodynamic properties of water. \n """ def __init__(self): # vectorize the function above to permit array variables self.vEOSIAPWS95 = np.vectorize(self.EOSIAPWS95) self.vauxMeltingTemp = np.vectorize(self.auxMeltingTemp) self.vapxsatpropT = np.vectorize(self.apxsatpropT) self.vapxsatpropP = np.vectorize(self.apxsatpropP) self.vcalcsatpropT = np.vectorize(self.calcsatpropT) self.vcalcsatpropP = np.vectorize(self.calcsatpropP) self.vwaterviscosity = np.vectorize(self.waterviscosity)
[docs] def EOSIAPWS95(self, TK, rho, FullEOSppt = False): """ This function evaluates the IAPWS basic equation of state to calculate thermodynamic properties of water, which is written as a function of temperature and density. \n Parameters ---------- TK : temperature [K] \n rho : density [kg/m3] \n FullEOSppt: Option to output all or essential water properties [False or True] Returns ---------- px : pressure [bar] \n ax : Helmholtz energy [kJ/kg-K] \n sx : Entropy [kJ/kg/K] \n hx : Enthalpy [kJ/kg] \n gx : Gibbs energy [kJ/kg] \n vx : Volume [m3/kg] \n pdx : Derivative of pressure with respect to delta in bar \n adx : Helmholtz energy derivative with respect to delta \n ztx : zeta value (needed to calculate viscosity) \n ptx : Derivative of pressure with respect to tau in bar \n ktx : Compressibility [/bar] \n avx : Thermal expansion coefficient (thermal expansivity) \n ux : Internal energy [kJ/kg] if FullEOSppt is True \n gdx : Gibbs energy derivative in kJ/kg if FullEOSppt is True \n bsx : Isentropic temperature-pressure coefficient [K-m3/kJ] if FullEOSppt is True \n dtx : Isothermal throttling coefficient [kJ/kg/bar] if FullEOSppt is True \n mux : Joule-Thomsen coefficient [K-m3/kJ] if FullEOSppt is True \n cpx : Isobaric heat capacity [kJ/kg/K] if FullEOSppt is True \n cvx : Isochoric heat capacity [kJ/kg/K] if FullEOSppt is True \n wx : Speed of sound [m/s] if FullEOSppt is True \n Usage ---------- [px, ax, ux, sx, hx, gx, vx, pdx, adx, gdx, ztx, ptx, ktx, avx, bsx, dtx, mux, cpx, cvx, wx] = EOSIAPW95( TK, rho) """ Tc = IAPWS95_COEFFS['Tc'] Pc = IAPWS95_COEFFS['Pc'] rhoc = IAPWS95_COEFFS['rhoc'] # specific and molar gas constants R = IAPWS95_COEFFS['R']/1000 # kJ kg-1 K-1 delta = rho/rhoc tau = Tc/TK # To avoid delta values of zero epxc = eps*delta if (delta <= epxc): delta = epxc rho = rhoc*delta # To avoid a singularity at the critical density (at any temperature), i.e. # if delta is unity, then delta - 1 is zero. This will lead to error when evaluating # (delta - 1)**n where n is negative, or in any division like (x/(d -1)). x1 = 1.0 - epxc x2 = 1.00 + epxc if (delta > x1) & (delta < x2): if (delta < 1.0): delta = x1 else: delta = x2 rho = rhoc*delta #%%--------------------------------------------------------- # specific dimensionless Helmholtz free energy (phi) and its derivatives ## IAPWS95.residual def phir(delta, tau): """ residual part of free energy, dimensionless parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients n = np.array(IAPWS95_COEFFS['n']); c = np.array(IAPWS95_COEFFS['c']) d = np.array(IAPWS95_COEFFS['d']); t = np.array(IAPWS95_COEFFS['t']) alpha = np.array(IAPWS95_COEFFS['alpha']); beta = np.array(IAPWS95_COEFFS['beta']) gamma = np.array(IAPWS95_COEFFS['gamma']); epsilon = np.array(IAPWS95_COEFFS['epsilon']) # a = np.array(IAPWS95_COEFFS['a']); b = np.array(IAPWS95_COEFFS['b']) y = np.dot(n[:7], (delta**d[:7] * tau**t[:7])) y = y + np.dot(n[7:51], (delta**d[7:51] * tau**t[7:51] * np.exp(-delta**c[7:51]))) y = y + np.dot(n[51:54], ( delta**d[51:54] * tau**t[51:54] * np.exp(-alpha*(delta - epsilon)**2 \ - beta[:3]*(tau - gamma)**2) )) y = y + np.dot(n[54:56], (Delta(delta,tau)**b * delta * Psi(delta,tau))) return y def phir_t(delta, tau): """ partial derivative for tau of phir where phir = residual part of free energy, dimensionless parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients n = np.array(IAPWS95_COEFFS['n']); c = np.array(IAPWS95_COEFFS['c']) d = np.array(IAPWS95_COEFFS['d']); t = np.array(IAPWS95_COEFFS['t']) alpha = np.array(IAPWS95_COEFFS['alpha']); beta = np.array(IAPWS95_COEFFS['beta']) gamma = np.array(IAPWS95_COEFFS['gamma']); epsilon = np.array(IAPWS95_COEFFS['epsilon']) # a = np.array(IAPWS95_COEFFS['a']); b = np.array(IAPWS95_COEFFS['b']) y = np.dot(n[:7], (t[:7]*delta**d[:7] * tau**(t[:7]-1))) y = y + np.dot(n[7:51], (t[7:51]*delta**d[7:51] * tau**(t[7:51]-1) * np.exp(-delta**c[7:51]))) y = y + np.dot(n[51:54], ( delta**d[51:54] * tau**t[51:54] * \ np.exp(-alpha*(delta - epsilon)**2 - beta[:3]*(tau - gamma)**2)* \ (t[51:54]/tau - 2*beta[:3]*(tau - gamma)) )) y = y + np.dot(n[54:56], (delta * (Delta_b_t(delta,tau) * Psi(delta,tau) + Delta(delta,tau)**b * \ Psi_t(delta,tau)))) return y def phir_tt(delta, tau): """ second partial derivative for tau of phir where phir = residual part of free energy, dimensionless parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients n = np.array(IAPWS95_COEFFS['n']); c = np.array(IAPWS95_COEFFS['c']) d = np.array(IAPWS95_COEFFS['d']); t = np.array(IAPWS95_COEFFS['t']) alpha = np.array(IAPWS95_COEFFS['alpha']); beta = np.array(IAPWS95_COEFFS['beta']) gamma = np.array(IAPWS95_COEFFS['gamma']); epsilon = np.array(IAPWS95_COEFFS['epsilon']) # a = np.array(IAPWS95_COEFFS['a']); b = np.array(IAPWS95_COEFFS['b']) y = np.dot(n[:7], (t[:7]*(t[:7]-1)*delta**d[:7] * tau**(t[:7]-2))) y = y + np.dot(n[7:51], (t[7:51]*(t[7:51]-1)*delta**d[7:51] * \ tau**(t[7:51]-2) * np.exp(-delta**c[7:51]))) y = y + np.dot(n[51:54], ( delta**d[51:54] * tau**t[51:54] * \ np.exp(-alpha*(delta - epsilon)**2 - \ beta[:3]*(tau - gamma)**2)* \ ( (t[51:54]/tau - 2*beta[:3]*(tau - gamma))**2 - \ t[51:54]/tau**2 - 2*beta[:3] ))) y = y + np.dot(n[54:56], (delta * (Delta_b_tt(delta,tau) * Psi(delta,tau) +\ 2*Delta_b_t(delta,tau) * Psi_t(delta,tau) +\ Delta(delta,tau)**b * Psi_tt(delta,tau) ))) return y def phir_d(delta, tau): """ partial derivative for delta of phir where phir = residual part of free energy, dimensionless parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients n = np.array(IAPWS95_COEFFS['n']); c = np.array(IAPWS95_COEFFS['c']) d = np.array(IAPWS95_COEFFS['d']); t = np.array(IAPWS95_COEFFS['t']) alpha = np.array(IAPWS95_COEFFS['alpha']); beta = np.array(IAPWS95_COEFFS['beta']) gamma = np.array(IAPWS95_COEFFS['gamma']); epsilon = np.array(IAPWS95_COEFFS['epsilon']) b = np.array(IAPWS95_COEFFS['b']) y = np.dot(n[:7], (d[:7]*delta**(d[:7]-1) * tau**t[:7])) y = y + np.dot(n[7:51], ( np.exp(-delta**c[7:51]) * (delta**(d[7:51]-1) * tau**t[7:51] \ * (d[7:51] - c[7:51]*delta**c[7:51])))) y = y + np.dot(n[51:54], (delta**d[51:54] * tau**t[51:54] \ * np.exp(-alpha*(delta - epsilon)**2 - beta[:3]*(tau - gamma)**2) \ * (d[51:54]/delta - 2*alpha*(delta - epsilon)))) tPsi = Psi(delta,tau) y = y + np.dot(n[54:56], (Delta(delta,tau)**b * (tPsi + delta*Psi_d(delta,tau)) \ + (Delta_b_d(delta,tau)*delta*tPsi))) return y def phir_dd(delta, tau): """ second partial derivative for delta of phir where phir = residual part of free energy, dimensionless parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients n = np.array(IAPWS95_COEFFS['n']); c = np.array(IAPWS95_COEFFS['c']) d = np.array(IAPWS95_COEFFS['d']); t = np.array(IAPWS95_COEFFS['t']) alpha = np.array(IAPWS95_COEFFS['alpha']); beta = np.array(IAPWS95_COEFFS['beta']) gamma = np.array(IAPWS95_COEFFS['gamma']); epsilon = np.array(IAPWS95_COEFFS['epsilon']) b = np.array(IAPWS95_COEFFS['b']) y = np.dot(n[:7], (d[:7]*(d[:7]-1)*delta**(d[:7]-2) * tau**t[:7])) y = y + np.dot(n[7:51], ( np.exp(-delta**c[7:51]) * ( delta**(d[7:51]-2) * tau**t[7:51] * \ ((d[7:51] - c[7:51]*delta**c[7:51]) * \ (d[7:51] - 1 - c[7:51]*delta**c[7:51]) - \ (c[7:51])**2*delta**c[7:51]) ) ) ) y = y + np.dot(n[51:54], ( tau**t[51:54]* np.exp(-alpha*(delta - epsilon)**2 \ -beta[:3]*(tau - gamma)**2) \ * (-2*alpha*delta**d[51:54] + 4*alpha**2*delta**d[51:54]*(delta-epsilon)**2 \ - 4*d[51:54]*alpha*delta**(d[51:54]-1)*(delta-epsilon) \ + d[51:54]*(d[51:54]-1)*delta**(d[51:54]-2))) ) tPsi = Psi(delta,tau) dPsi = Psi_d(delta,tau) y = y + np.dot(n[54:56], ( Delta(delta,tau)**b * (2*dPsi + delta* Psi_dd(delta,tau)) \ + 2*Delta_b_d(delta,tau)*(tPsi + delta*dPsi) \ + Delta_b_dd(delta,tau)*delta*tPsi) ) return y def phir_dt(delta, tau): """ partial derivative for delta and tau of phir where phir = residual part of free energy, dimensionless parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients n = np.array(IAPWS95_COEFFS['n']); c = np.array(IAPWS95_COEFFS['c']) d = np.array(IAPWS95_COEFFS['d']); t = np.array(IAPWS95_COEFFS['t']) alpha = np.array(IAPWS95_COEFFS['alpha']); beta = np.array(IAPWS95_COEFFS['beta']) gamma = np.array(IAPWS95_COEFFS['gamma']); epsilon = np.array(IAPWS95_COEFFS['epsilon']) b = np.array(IAPWS95_COEFFS['b']) y = np.dot(n[:7], (d[:7]*t[:7]*delta**(d[:7]-1) * tau**(t[:7]-1))) y = y + np.dot(n[7:51], (t[7:51]* delta**(d[7:51]-1) * tau**(t[7:51]-1) \ * (d[7:51] - c[7:51]*delta**c[7:51]) *np.exp(-delta**c[7:51]) )) y = y + np.dot(n[51:54], ( delta**d[51:54] * tau**t[51:54] \ * np.exp(-alpha*(delta - epsilon)**2 - beta[:3]*(tau - gamma)**2) \ * (d[51:54]/delta - 2*alpha*(delta - epsilon)) \ *(t[51:54]/tau - 2*beta[:3]*(tau-gamma) ))) tPsi = Psi(delta,tau) ttPsi = Psi_t(delta,tau) y = y + np.dot(n[54:56], ( Delta(delta,tau)**b * \ (Psi_t(delta,tau) + delta*Psi_dt(delta,tau)) \ + (Delta_b_d(delta,tau)*delta*ttPsi) \ + Delta_b_t(delta,tau)*(tPsi+delta*Psi_d(delta,tau)) \ + Delta_b_dt(delta,tau)*delta*tPsi)) return y ## IAPWS95.idealgas # Equation 6.5 def phi0(delta, tau): """ ideal gas part of free energy, dimensionless parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # unpack coefficients n0 = np.asarray(IAPWS95_COEFFS['n0']) gamma0 = np.asarray(IAPWS95_COEFFS['gamma0']) y = np.log(delta) + n0[0] + n0[1]*tau + n0[2]*np.log(tau) y = y + np.dot(n0[3:], np.log(1 - np.exp(-gamma0[3:]*tau))) return y # derivatives from Table 6.4 def phi0_t(delta, tau): """ partial derivative for tau of phi0 where phi0 = ideal gas part of free energy, dimensionless parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # unpack coefficients n0 = np.asarray(IAPWS95_COEFFS['n0']) gamma0 = np.asarray(IAPWS95_COEFFS['gamma0']) y = n0[1] + n0[2]/tau y = y + np.dot(n0[3:], gamma0[3:]*(1/(1 - np.exp(-gamma0[3:]*tau))- 1.0)) return y def phi0_tt(delta, tau): """ second partial derivative for tau of phi0 where phi0 = ideal gas part of free energy, dimensionless parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # unpack coefficients n0 = np.asarray(IAPWS95_COEFFS['n0']) gamma0 = np.asarray(IAPWS95_COEFFS['gamma0']) y = -n0[2]/tau**2 y = y - np.dot(n0[3:], (gamma0[3:]**2*np.exp(-gamma0[3:]*tau)*(1-np.exp(-gamma0[3:]*tau))**-2 )) return y def phi0_d(delta, tau): """ partial derivative for delta of phi0 where phi0 = ideal gas part of free energy, dimensionless parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ y = 1/delta return y def phi0_dd(delta, tau): """ second partial derivative for delta of phi0 where phi0 = ideal gas part of free energy, dimensionless parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ y = -1/delta**2 return y def phi0_dt(delta, tau): """ partial derivative for tau and delta of phi0 where phi0 = ideal gas part of free energy, dimensionless parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ y = 0 return y # Supporting functions for calculating the ideal-gas and residual parts in the IAPWS-95 formulation def Delta(delta, tau): """ auxiliary function in IAPWS95 formulation parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients a = np.array(IAPWS95_COEFFS['a']); B = np.array(IAPWS95_COEFFS['B']) return theta(delta, tau)**2 + B*((delta - 1)**2)**a def Delta_d(delta, tau): """ Delta_d = (d Delta)/(d delta) auxiliary function in IAPWS95 formulation parameters: delta = rho/rhoc dimensionless density tau = Tc/T dimensionless inverse temperature """ # % unpack coefficients a = np.array(IAPWS95_COEFFS['a']); beta = np.array(IAPWS95_COEFFS['beta']) A = np.array(IAPWS95_COEFFS['A']); B = np.array(IAPWS95_COEFFS['B']) d1 = delta - 1 y = d1 * ( A*theta(delta,tau)*2/beta[-2:]* (d1**2)**(1/(2*beta[-2:])-1)+ 2*B*a*(d1**2)**(a-1) ) return y def Delta_dd(delta, tau): """ Delta_dd = (d2 Delta)/(d delta2) auxiliary function in IAPWS95 formulation parameters: delta = rho/rhoc dimensionless density tau = Tc/T dimensionless inverse temperature """ # % unpack coefficients a = np.array(IAPWS95_COEFFS['a']); beta = np.array(IAPWS95_COEFFS['beta']) A = np.array(IAPWS95_COEFFS['A']); B = np.array(IAPWS95_COEFFS['B']) d1 = delta - 1 y = 1/d1 * Delta_d(delta, tau) + \ d1**2*( 4*B*a*(a-1)*(d1**2)**(a-2) + \ 2*A**2*beta[-2:]**-2*((d1**2)**(1/(2*beta[-2:])-1))**2 + \ A*theta(delta,tau)*4/beta[-2:]*(1/(2*beta[-2:])-1)* (d1**2)**(1/(2*beta[-2:])-2)) return y def Delta_b_d(delta, tau): """ Delta_b_d = (d Delta^b)/(d delta) auxiliary function in IAPWS95 formulation parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients b = np.array(IAPWS95_COEFFS['b']) return b * Delta(delta,tau)**(b-1) * Delta_d(delta,tau) def Delta_b_dd(delta, tau): """ Delta_b_dd = (d2 Delta^b)/(d delta2) auxiliary function in IAPWS95 formulation parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients b = np.array(IAPWS95_COEFFS['b']) y = b * ( Delta(delta,tau)**(b-1)*Delta_dd(delta,tau) + \ (b-1)*Delta(delta,tau)**(b-2)*(Delta_d(delta,tau))**2) return y def Delta_b_dt(delta, tau): """ Delta_b_dt = (d2 Delta^b)/(d delta tau) auxiliary function in IAPWS95 formulation parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients b = np.array(IAPWS95_COEFFS['b']) beta = np.array(IAPWS95_COEFFS['beta']) A = np.array(IAPWS95_COEFFS['A']) d1 = delta - 1 y = -A*b*2/beta[-2:]*Delta(delta,tau)**(b-1) * d1*(d1**2)**(1/(2*beta[-2:])-1) \ - 2*theta(delta,tau)*b*(b-1)*Delta(delta,tau)**(b-2) * Delta_d(delta,tau) return y def Delta_b_t(delta, tau): """ Delta_b_t = (d Delta^b)/(d tau) auxiliary function in IAPWS95 formulation parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients b = np.array(IAPWS95_COEFFS['b']) return -2*theta(delta,tau)*b*Delta(delta,tau)**(b-1) def Delta_b_tt(delta, tau): """ ∂2delta/∂x|y Delta_b_tt = (d2 Delta^b)/(d tau2) auxiliary function in IAPWS95 formulation parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients b = np.array(IAPWS95_COEFFS['b']) return 2*b*Delta(delta,tau)**(b-1) + 4*(theta(delta,tau))**2*b*(b-1)*Delta(delta,tau)**(b-2) def theta(delta, tau): """ auxiliary function in IAPWS95 formulation parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients beta = np.array(IAPWS95_COEFFS['beta']); A = np.array(IAPWS95_COEFFS['A']) return (1 - tau) + A*((delta - 1)**2)**(1./(2*beta[3:5])) def Psi(delta, tau): """ auxiliary function in IAPWS95 formulation parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients C = np.array(IAPWS95_COEFFS['C']) D = np.array(IAPWS95_COEFFS['D']) return np.exp(-C*(delta-1)**2 - D*(tau - 1)**2) def Psi_d(delta, tau): """ ∂Psi/∂delta Psi_d = (d Psi)/(d delta) auxiliary function in IAPWS95 formulation parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients C = np.array(IAPWS95_COEFFS['C']) return -2*C*(delta - 1)*Psi(delta, tau) def Psi_t(delta, tau): """ Psi_t = ∂Psi/∂tau = (d Psi)/(d tau) auxiliary function in IAPWS95 formulation parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients D = np.array(IAPWS95_COEFFS['D']) return -2*D*(tau - 1)*Psi(delta,tau) def Psi_tt(delta, tau): """ Psi_tt = ∂2Psi/∂tau2 = (d2 Psi)/(d tau2) auxiliary function in IAPWS95 formulation parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients D = np.array(IAPWS95_COEFFS['D']) return (2*D*(tau - 1)**2 - 1)*2*D*Psi(delta,tau) def Psi_dd(delta, tau): """ Psi_dd = (d2 Psi)/(d delta2) auxiliary function in IAPWS95 formulation Parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients C = np.array(IAPWS95_COEFFS['C']) return (2*C*(delta - 1)**2 - 1)*2*C*Psi(delta, tau) def Psi_dt(delta, tau): """ Psi_dt = (d Psi)/(d delta tau) auxiliary function in IAPWS95 formulation Parameters: delta = rho/rhoc dimensionless density tau = Tc/TK dimensionless inverse temperature """ # % unpack coefficients C = np.array(IAPWS95_COEFFS['C']) D = np.array(IAPWS95_COEFFS['D']) return 4*C*D*(delta - 1)*(tau - 1)*Psi(delta, tau) # Calculate thermodynamic functions. # Helmholtz energy. The value is in J/kg-K. ax = (R*TK*( phi0(delta, tau) + phir(delta, tau) ) ) # Pressure kpa to bar. px = rho*R*TK*( 1 + delta*phir_d(delta, tau) ) * 0.010 # Internal energy. kJ/kg ux = R*TK*tau*( phi0_t(delta, tau) + phir_t(delta, tau) ) # Entropy. kJ/kg/K sx = R*( tau*(phi0_t(delta, tau) + phir_t(delta, tau)) - phi0(delta, tau) - phir(delta, tau) ) # Enthalpy. kJ/kg hx = R*TK*( 1 + tau*(phi0_t(delta, tau) + phir_t(delta, tau)) + delta*phir_d(delta, tau) ) # Gibbs energy. kJ/kg # Alternate formulas for the Gibbs energy. gx = hx - TK*sx = ax + hx - ux gx = R*TK*( 1 + phi0(delta, tau) + phir(delta, tau) + delta*phir_d(delta, tau) ) # Volume. m3/kg vx = (1/rho) if FullEOSppt == True: # Isochoric heat capacity. kJ/kg/K cvx = -R*tau**2*( phi0_tt(delta, tau) + phir_tt(delta, tau) ) # Isobaric heat capacity. kJ/kg/K x1 = ( 1 + delta*phir_d(delta, tau) - delta*tau*phir_dt(delta, tau) )**2 x2 = 1 + 2*delta*phir_d(delta, tau) + delta**2*phir_dd(delta, tau) cpx = x1*0 cpx = float(cvx + R*(x1/x2)) if (abs(x2) > 1e-15) else 1.0 + 100 # Speed of sound. m/s x1 = ( 1 + delta*phir_d(delta, tau) - delta*tau*phir_dt(delta, tau) )**2 x2 = tau**2*( phi0_tt(delta, tau) + phir_tt(delta, tau) ) x3 = x1/x2 xxt = R*TK*( 1 + 2*delta*phir_d(delta, tau) + delta**2*phir_dd(delta, tau) - x3 ) wx = np.where(xxt > 0, np.sqrt(xxt), 0) wx = wx*np.sqrt(1000.00) # convert Speed of sound from sqrt(kJ/kg) to m/s # Joule-Thomsen coefficient. K-m3/kJ (equivalent to the usual K/MPa) x1 = delta*phir_d(delta, tau) + delta**2*phir_dd(delta, tau) + delta*tau*phir_dt(delta, tau) x2 = ( 1 + delta*phir_d(delta, tau) - delta*tau*phir_dt(delta, tau) )**2 x3 = ( phi0_tt(delta, tau) + phir_tt(delta, tau) )*( 1.0 + 2*delta*phir_d(delta, tau) + \ delta**2*phir_dd(delta, tau) ) mux = (( - x1/( x2 - tau**2*x3 ) )/(R*rho) ) # Isothermal throttling coefficient. x1 = 1 + delta*phir_d(delta, tau) - delta*tau*phir_dt(delta, tau) x2 = 1 + 2*delta*phir_d(delta, tau) + delta**2*phir_dd(delta, tau) dtx = (( 1 - ( x1/x2 ) )/rho ) dtx = 0.010*dtx # convert Isothermal throttling coefficient from m3/kg to the usual kJ/kg/bar. # Isentropic temperature-pressure coefficient. (the same units as for the Joule-Thomson coefficient) x1 = 1.0 + delta*phir_d(delta, tau) - delta*tau*phir_dt(delta, tau) x2 = x1**2 x3 = ( phi0_tt(delta, tau) + phir_tt(delta, tau) )*( 1 + 2*delta*phir_d(delta, tau) + \ delta**2*phir_dd(delta, tau) ) bsx = (( x1/( x2 - tau**2*x3 ) )/(R*rho) ) # Gibbs energy derivative. gdx = (R*TK*( phi0_d(delta, tau) + 2*phir_d(delta, tau) + delta*phir_dd(delta, tau) )) # Derivative of pressure with respect to delta (needed to perform Newton-Raphson # iteration to matched desired pressure) in bar. pdx = ( px/delta ) + delta*rhoc*R*TK*( phir_d(delta, tau) + delta*phir_dd(delta, tau) ) * 0.010 # Derivative of pressure with respect to tau (needed to calculate the thermal expansion # coefficient) in bar. ptx = ( -px/tau ) + px*delta*phir_dt(delta, tau)/(1 + delta*phir_d(delta, tau)) # Compressibility. Here the value is in /bar. ktx = 1.0/(delta*pdx) # Calculate zeta value (needed to calculate viscosity). Note: ztx is dimensionless # An alternative formula is: ztx = delta*Pc*ktx ztx = Pc/pdx # Thermal expansion coefficient (thermal expansivity). This calculation is based on the Maxwell relation: avx = ktx*ptx*( -tau/TK ) # Helmholtz energy derivative with respect to delta adx = (R*TK*( phi0_d(delta, tau) + phir_d(delta, tau) )) if FullEOSppt == True: output = px, ax, sx, hx, gx, vx, pdx, adx, ztx, ptx, ktx, avx, ux, gdx, bsx, dtx, mux, cpx, cvx, wx else: output = px, ax, sx, hx, gx, vx, pdx, adx, ztx, ptx, ktx, avx return output
[docs] def auxMeltingPressure(self, TK, P): """ This function calculates the melting pressure of ice as a function of temperature. This model is described in IAPWS R14-08(2011), Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance, as may be found at: http://www.iapws.org/relguide/MeltSub.html Five ice phases are covered here. The melting pressure is not a single-valued function of temperature as there is some overlap in the temperature ranges of the individual phases. There is no overlap in the temperature ranges of Ices III, V, VI, and VII, which together span the range 251.165 - 715K. The melting pressure is continuous and monotonically increasing over this range, albeit with discontinuities in slope at the triple points where two ice phases and liquid are in equilibrium. The problem comes in with Ice Ih, whose temperature range completely overlaps that of Ice III and partially overlaps that of Ice V. For a temperature in the range for Ice Ih, there are two possible melting pressures. The possible ambiguity here in the meaning of melting pressure is not present if the temperature is greater than or equal to the triple point temperature of 273.16K, or if the pressure is greater than or equal to 2085.66 bar (the triple point pressure for Ice Ih-Ice III-liquid). If neither of these conditions are satisfied, then the Ice Ih-liquid curve will be used. To deal with the pressure condition noted above, this function assumes that an actual pressure is specified. Parameters ---------- P : pressure [bar] TK : temperature [K] Returns ---------- Pmelt : melting pressure [bar] Usage ---------- [Pmelt] = auxMeltingPressure( TK, P) """ # Coefficients for calculating the melting pressure of Ice Ih. a = np.array([0.119539337e+07, 0.808183159e+05, 0.333826860e+04]) b = np.array([0.300000e+01, 0.257500e+02, 0.103750e+03]) PPa = P*1e5 # convert bar to Pa if (PPa <= 208.566e6): if (251.165 <= TK <= 273.16): # Ice Ih. theta = TK/273.16 pimelt = 1 + np.sum(a*( 1 - theta**b)) Pmelt = pimelt*611.647 #e-06 else: Pmelt = np.nan #2085.66 else: if (251.165 <= TK < 256.164): # Ice III. theta = TK/251.165 pimelt = 1 - 0.299948*( 1 - theta**60 ) Pmelt = pimelt*208.566e6 elif (256.164 <= TK < 273.31): # Ice V. theta = TK/256.164 pimelt = 1 - 1.18721*( 1 - theta**8 ) Pmelt = pimelt*350.1e6 elif (273.31 <= TK < 355.0): # Ice VI. theta = TK/273.31 pimelt = 1 - 1.07476*( 1 - theta**4.6 ) Pmelt = pimelt*632.4e6 elif (355.0 <= TK < 715.0): # Ice VII. theta = TK/355.0 px = 0.173683e+01*( 1 - theta**(-1) ) - 0.544606e-01*( 1 - theta**5 ) \ + 0.806106e-07*( 1 - theta**22 ) pimelt = np.exp(px) Pmelt = pimelt*2216.0e6 elif (715.0 <= TK <= 2000.0): # This is out of range. Ice VII, extrapolated. theta = TK/355.0 px = 0.173683e+01*( 1 - theta**(-1) ) - 0.544606e-01*( 1 - theta**5 ) \ + 0.806106e-07*( 1 - theta**22 ) pimelt = np.exp(px) Pmelt = pimelt*2216.0e6 else: Pmelt = np.nan return Pmelt*1e-5
[docs] def auxMeltingTemp(self, P): """ This function calculates the melting temperature of ice as a function of pressure. This inverts the model for the melting pressure as a function of temperature. That model is described in IAPWS R14-08(2011), Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary Water Substance as may be found at: http://www.iapws.org/relguide/MeltSub.html Inversion of the model for the melting pressure is done here using the secant method. This is chosen instead of the Newton-Raphson method to avoid potential problems with slope discontinuites at boundaries between the ice phases for pressures above 208.566 MPa, which is the equilibrium pressure for Ice Ih-Ice III-liquid. The corresponding equlibrium temperature is 251.165K. Putative melting temperatures should not be less than this for pressures above 208.566 Mpa, nor more than this for pressures less than this. Parameters ---------- P : pressure [bar] Returns ---------- Tmelt : temperature [K] Usage ---------- [Tmelt] = auxMeltingTemp( P) """ # Calculates the melting temperature that corresponds to the actual pressure. # The variables t0 and t1 are initial values for the iteration. PPa = P*1e5 # convert bar to Pa if (PPa < 208.566e6): # In the Ice Ih field. tlim0 = 251.165 tlim1 = 273.16 t0 = tlim0 t1 = tlim1 elif (208.566e6 <= PPa < 350.1e6): # In the Ice III field. tlim0 = 251.165 tlim1 = 256.164 t0 = tlim0 t1 = tlim1 elif (350.1e6 <= PPa < 632.4e6): # In the Ice V field. tlim0 = 256.164 tlim1 = 273.31 t0 = tlim0 t1 = tlim1 elif (632.4e6 <= PPa < 2216.0e6): # In the Ice VI field. tlim0 = 273.31 tlim1 = 355.0 tx = tlim1 - tlim0 t0 = tlim0 + 0.3*tx t1 = tlim0 + 0.7*tx elif (2216.0e6 <= PPa <= 10000.0e6): # In the Ice VII field. # Note: the upper limit here of 10000 MPa is an arbitrary cutoff suggested # by Figure 1 from IAPWS R14, but this is not part of the IAPWS R14 standard. tlim0 = 355.0 tlim1 = 1000.0 tx = tlim1 - tlim0 t0 = tlim0 + 0.3*tx t1 = tlim0 + 0.7*tx elif (PPa > 20000.0e6): Tm = np.nan funct_melt = lambda t: self.auxMeltingPressure(t, P) - P Tm = root_scalar(funct_melt, method = 'secant', bracket=[t0, t1], x0=t0, x1=t1, xtol = 1.0e-10).root Tmelt = Tm return Tmelt
[docs] def waterviscosity(self, TC, P, rho): """ This function calculates the viscosity of water using Ref: (1) "IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance" (IAPWS R12-08). (2) Huber M.L., Perkins R.A., Laesecke A., Friend D.G., Sengers J.V., Assael M.J., Metaxa I.N., Vogel E., Mares R., and Miyagawa K. (2009) New International Formulation for the Viscosity of H2O. J. Phys. Chem. Ref. Data 38, 101-125. \n Parameters ---------- TC temperature [°C] \n P pressure [bar] \n rho density [kg/m3] \n Returns ---------- visc viscosity [Pa.s] Usage ---------- [visc] = waterviscosity( TC, P, rho) """ TK = convert_temperature( TC, Out_Unit = 'K' ) #convert to Kelvin PPa = P*1e5 Tc = IAPWS95_COEFFS['Tc'] # K rhoc = IAPWS95_COEFFS['rhoc'] H0 = [1.67752e+00, 2.20462e+00, 0.6366564e+00, -0.241605e+00] I1 = [0, 1, 2, 3, 0, 1, 2, 3, 5, 0, 1, 2, 3, 4, 0, 1, 0, 3, 4, 3, 5] J1 = [0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6] H1 = [0.520094, 0.0850895, -1.08374, -0.289555, 0.222531, 0.999115, 1.8879700000000001, 1.26613, 0.120573, -0.281378, -0.9068510000000001, -0.772479, -0.48983699999999997, -0.25704, 0.161913, 0.257399, -0.0325372, 0.0698452, 0.00872102, -0.00435673, -0.000593264] delta = rho/rhoc Tbar = TK/Tc muref = 1.00e-06 # Pa.s # Check range of validity. chk = False # triple point Ttr = 273.16 # K Ptr = 611.657 # Pa Ttmltx = self.auxMeltingTemp(P) if (PPa < Ptr): if (Ttr <= TK <= 1173.15): chk = True elif Ttmltx > 0.0: if (Ptr <= PPa <= 300.0e6): if (Ttmltx <= TK <= 1173.15): chk = True elif (300.0e6 < PPa <= 350.0e6): if (Ttmltx <= TK <= 873.15): chk = True elif (350.0e6 < PPa <= 500.0e6): if (Ttmltx <= TK <= 433.15): chk = True elif (500.0e6 < PPa <= 1000.0e6): if (Ttmltx <= TK <= 373.15): chk = True if (not chk) | (Ttmltx <= 0): mubar = np.nan else: # Calculate the viscosity in the dilute gas limit (mubar0) mubar0 = 100*np.sqrt(Tbar)/np.sum([x/Tbar**idx for idx, x in enumerate(H0)]) s1=np.zeros([len(H1), 1]) for x in range(len(H1)): s1[x] = H1[x]*((1/Tbar) -1)**I1[x] * (delta-1)**J1[x] # Calculate the contribution to viscosity due to finite density mubar1 = np.exp(delta * np.sum(s1)) # critical enhancement xmu = 0.068 qc = 1/1.9 #/nm qD = 1/1.1 #/nm nvc = 0.63 gamma = 1.239 xicl0 = 0.13 gam0 = 0.06 TR = 1.5 Tkr = TR*Tc # Estimate the reference zeta value by directly evaluating the EOS model ztxr = self.EOSIAPWS95(Tkr, rho)[8] ztx = self.EOSIAPWS95(TK, rho)[8] # Get delchb (DELTA chibar, equation 21). delchb = delta*( ztx - (ztxr*TR*Tbar) ) if (delchb < 0.0): delchb = 0.0 # Get xicl (equation 20). xicl = xicl0*( (delchb/gam0)**(nvc/gamma) ) # Get psid (equation 17). psid = math.acos(( 1.0 + (qD*xicl)**2 )**(-0.5)) # Get www (w in equation 19). w = np.sqrt(abs( ((qc*xicl) - 1.0)/((qc*xicl) + 1.0) )) * math.tan(0.5*psid) # Get lcap (L(w) in equation 18) if ((qc*xicl) > 1): lcap = np.log( (1 + w)/(1 - w) ) else: lcap = 2*math.atan( abs(w) ) if (xicl <= 0.3817016416): ycap = 0.2*(qc*xicl)*((qD*xicl)**5)* \ (1 - (qc*xicl) + (qc*xicl)**2 - ( 765.0/504.0 )*(qD*xicl)**2) else: ycap = ( 1/12 )*math.sin(3*psid) - ( 1/(4*(qc*xicl)) )*math.sin(2*psid) +\ ( 1/(qc*xicl)**2 )*( 1.0 - 1.25*(qc*xicl)**2 ) *math.sin(psid) \ -( 1.0/(qc*xicl)**3 ) *( ( 1.0 - 1.5*(qc*xicl)**2 ) \ - ( abs((qc*xicl)**2 - 1) )**1.5 * lcap) if (645.91 < TK < 650.77) and (245.8 < rho < 405.3): mubar2 = np.exp(xmu * ycap) else: mubar2 = 1 mubar = mubar0 * mubar1 *mubar2 visc = mubar*muref return visc
[docs] def apxsatpropT(self, TK): """ This function evaluates the approximate pressure (psat) as a function of temperature along the vapor-liquid equilibrium curve, using equation 2.5 of Wagner and Pruss (2002). It also calculates the derivative of saturation pressure wrt temperature as well as the densities of the liquid and vapor phases using equations 2.6 and 2.7 from the same source. \n Parameters: ---------- TK temperature [K] (saturation temperature) \n Returns: ---------- Psat saturation pressure [bar] \n Psat_t Derivative of saturation pressure with respect to temperature \n rhosl density of liquid [kg/m3] \n rhosv density of vapor [kg/m3] \n Usage: ---------- [Psat, Psat_t, rhosl, rhosv] = apxsatpropT( TK) """ Tc = IAPWS95_COEFFS['Tc'] # K Pc = IAPWS95_COEFFS['Pc'] # MPa a = [-7.85951783, 1.84408259, -11.7866497, 22.6807411, -15.9618719, 1.80122502] rhoc = IAPWS95_COEFFS['rhoc'] b = [1.99274064, 1.09965342, -0.510839303, -1.75493479, -45.5170352, -6.74694450e5] c = [-2.03150240, -2.68302940, -5.38626492, -17.2991605, -44.7586581, -63.9201063] # Check to see that the temperature is in the allowed range. if (TK < 273.15) | (TK > Tc): Psat = np.nan Psat_t = np.nan rhosl = np.nan rhosv = np.nan else: # Saturation pressure. th = 1 - TK/Tc t1 = a[0]*th + a[1]*th**1.5 + a[2]*th**3 + a[3]*th**3.5 + a[4]*th**4 + a[5]*th**7.5 Psat = Pc*np.exp(Tc*t1/TK) # Derivative of saturation pressure with respect to temperature. x1 = a[0] + 1.5*a[1]*th**0.5 + 3.0*a[2]*th**2.0 + 3.5*a[3]*th**2.5 + 4.0*a[4]*th**3.0 + 7.5*a[5]*th**6.5 x2 = np.log( Psat/Pc ) + x1 Psat_t = -( Psat/TK )*x2 # Density of liquid. th = (1 - TK/Tc)**(1/3) t1 = 1 + b[0]*th + b[1]*th**2 + b[2]*th**5 + b[3]*th**16 + b[4]*th**43 + b[5]*th**110 rhosl = rhoc*t1 # Density of vapor. th = np.sqrt(th) t2 = c[0]*th**2 + c[1]*th**4 + c[2]*th**8 + c[3]*th**18 + c[4]*th**37 + c[5]*th**71 rhosv = rhoc*np.exp(t2) return Psat*10, Psat_t*10, rhosl, rhosv
[docs] def apxsatpropP(self, P): """ This function evaluates the approximate temperature (tsat) as a function of pressure along the vapor-liquid equilibrium curve, using equation 2.5 of Wagner and Pruss (2002). This is similar to apxsatpropT(TK), but evaluates the inverse problem (Tsat as a function of pressure instead of psat as a function of temperature). Newton-Raphson iteration is used. \n Parameters: ---------- P pressure [bar] \n Returns: ---------- Tsat saturation temperature [K] \n Usage: ---------- [Tsat] = apxsatpropP( P) """ Tc = IAPWS95_COEFFS['Tc'] # K Pc = IAPWS95_COEFFS['Pc']*10 # bar # triple point Ttr = 273.16 # K Ptr = 611.657e-5 # bar P1atm = 1.01325e0 # bar Ts1atm = 373.124 # K # Check to see that the pressure is in the allowed range. if (P < Ptr) | (P > Pc): Tsat = np.nan else: # Choose a starting temperature value. if (P >= P1atm): # Interpolate between 100C, 1.01325 bar and Tcr, Pcr. dtdp = (Tc - Ts1atm)/(Pc - P1atm) TK = Ts1atm + dtdp*(P - P1atm) else: # Interpolate between the triple point and 100C, 1.013 bar dtdp = (Ts1atm - Ttr)/(P1atm - Ptr) TK = Ttr + dtdp*(P - Ptr) funct_tsat = lambda T: self.apxsatpropT(T)[0]*0.1 - P*0.1 Tsat = fsolve(funct_tsat, TK, xtol=1.48e-10)[0] return Tsat
[docs] def calcsatpropT(self, TK): """ This function calculates the saturation properties as a function of specified temperature. This is achieved using Newton-Raphson iteration to refine values of pressure, vapor density, and liquid density, starting with results obtained using approximate equations included by Wagner and Pruss (2002) in their description of the IAPWS-95 model. \n Parameters ---------- TK temperature [K] \n Returns ---------- Psat saturation pressure [bar] \n rhosl density of liquid [kg/m3] \n rhosv density of vapor [kg/m3] \n Usage ---------- [Psat, rhosl, rhosv] = calcsatpropT( TK) """ Tc = IAPWS95_COEFFS['Tc'] # K rhoc = IAPWS95_COEFFS['rhoc'] bettl1 = 1.0e-8 bettl2 = 1.0e-7 btxtol = 1.0e-10 qxiter = False alpha = np.zeros([3, 1]); beta = alpha aamatr = np.zeros([3, 3]) deltas = np.zeros([3, 1]); arelax = 1 if (TK <= 298.15): btxtol = bettl1 elif (647.090 < TK < Tc): qxiter = True elif (TK > 647.090): btxtol = bettl2 # Calculate approximate saturation pressure and corresponding densities of liquid and vapor. # These results are not those of the IAPWS-95 model itself, but can serve as starting estimates. [Psat, _, rhosl, rhosv] = self.apxsatpropT(TK) # Save the values from the approximation. delta_svq = rhosv/rhoc delta_slq = rhosl/rhoc it = 0 itermx = 50 Psat0 = Psat deltasv0 = delta_svq deltasv = delta_svq deltasl0 = delta_slq deltasl = delta_slq while True: # Below is the return point to refine the saturation curve properties. # First calculate the vapor properties by calling EOSIAPWS95 with the vapor density. [Pxv, axv, _, _, _, _, Pdxv, adxv] = self.EOSIAPWS95(TK, rhosv)[:8] # Now calculate the liquid properties by calling EOSIAPWS95 with the liquid density. [Pxl, axl, _, _, _, _, Pdxl, adxl] = self.EOSIAPWS95(TK, rhosl)[:8] # The pdx for vapor cannot be negative. Under-relax to prevent this. if (Pdxv < 0): if (it <= 0): #if (icutv >= 30): #icutv = icutv + 1 rhosv = 0.995*rhosv deltasv = rhosv/rhoc else: #icutv = icutv + 1 arelax = 0.25 # The revised delta for vapor cannot be less than a good # fraction of the value obtained from the intial approximation. if (deltasv < 0.9*delta_svq): arelax = 0.25 # The pdx for liquid cannot be negative. Under-relax to prevent this. if (Pdxl < 0): if (it <= 0): #if (icutl >= 30): #icutl = icutl + 1 rhosl = 1.001*rhosl deltasl = rhosl/rhoc else: #icutl = icutl + 1 arelax = 0.25 # The revised delta for liquid cannot be less than a good # fraction of the value obtained from the intial approximation. if (deltasl > 1.1*delta_slq): arelax = 0.25 # The delta for liquid cannot be less than the delta for vapor. # Corrected delta values must be positive to avoid # a singularity in the equation-of-state model equations. # Under-relax to prevent this. if (deltasl < deltasv) | (deltasv <= 0 or deltasl <= 0): arelax = 0.25 deltas = deltas*arelax Psat = Psat0 + deltas[2, 0] deltasl = deltasl0 + deltas[1, 0] deltasv = deltasv0 + deltas[0, 0] rhosl = rhoc*deltasl rhosv = rhoc*deltasv # ============================================================================= # Have obtained valid (outside the unstable zone) vapor and liquid properties for the current iteration. # Improve the calculated saturation properties by solving three equations in three unknowns. # The equations are all in terms of pressure. The unknowns to be found are Psat, deltasv, and deltasl. # Calculate the Maxwell crition pressure (Gibbs energy equality expressed through the # Helmholtz energies and the pressure) # ============================================================================= dix = (1/deltasl) - (1/deltasv) # dltx = deltasl - deltasv if (abs(dix) > 1e-15): if (abs(axv - axl) > 1e-15): # Normal calculation, result in kPa. Pxm = rhoc*( axv - axl )/dix Pxm = 0.01*Pxm # Convert from kPa to bar. else: # There is no difference in the Helmholtz energies of the vapor and the liquid. Pxm = 0 else: # Exception intended for the critical point. if (abs(TK - Tc) <= 1e-10) & (abs(deltasv - 1.0) <= 1e-10) & (abs(deltasl - 1) <= 1e-10): # Am at the critical point. Pxm = Pxv else: # Not at the critical point, but the vapor and liquid densities have converged. Pxm = 0 # Calculate residual functions. alpha[0, 0] = Pxm - Psat alpha[1, 0] = Pxv - Psat alpha[2, 0] = Pxl - Psat beta = abs(alpha/Psat) betamx = np.max(beta) # Note: using a convergence tolerance below 1.0d-11 # may lead to non-convergence due to the limitations of 64-bit arithmetic. # print(it, ' Psat: %.6e' % Psat[0], 'betamx: %.6e' % betamx) if (betamx <= btxtol) | (it >= itermx): # Iteration has converged. # P = Psat break elif (qxiter and it >= 5): break # Since this matrix is only 3x3, the simultaneous equations have the form: # aamatr(i,1)*deltas(1) + aamatr(i,2)*deltas(2) + aamatr(i,3)*deltas(3) = -alpha(i), i = 1,3 # The Jacobian matrix J here is aamatr(kdim, kdim). aamatr[0, :] = [Pxm*(-(1/(dix*deltasv**2)) + (adxv/(axv - axl))), Pxm*((1/(dix*deltasl**2)) - (adxl/(axv - axl))), -1] aamatr[1, :] = [Pdxv, 0, -1] aamatr[2, :] = [0, Pdxl, -1] deltas = -lu_solve(lu_factor(aamatr), alpha) # Save current values. Psat0 = Psat deltasv0 = deltasv deltasl0 = deltasl Psat = Psat0 + deltas[2, 0] deltasl = deltasl0 + deltas[1, 0] deltasv = deltasv0 + deltas[0, 0] rhosl = rhoc*deltasl rhosv = rhoc*deltasv it = it + 1 return Psat, rhosl, rhosv
[docs] def calcsatpropP(self, P): """ This function calculates the saturation properties as a function of specified pressure. This is done by iterating using Newton method on pressure to obtain the desired temperature. This implementation calls calcsatpropT(TK) to calculate the saturation pressure, liquid and vapor densities. \n Parameters ---------- P pressure [bar] \n Returns ---------- Tsat temperature [K] \n rhosl liquid density [kg/m3] \n rhosv vapor density [kg/m3] \n Usage ---------- [Tsat, rhosl, rhosv] = calcsatpropP( P) """ btxtol = 1.0e-10 itermx = 50 Tc = IAPWS95_COEFFS['Tc'] # K # Calculate approximate saturation temperature to use as a starting estimate Tsat = convert_temperature( self.apxsatpropP(P), Out_Unit = 'C' ) # convert to C # Iterate to calculate the saturation temperature funct_tsat = lambda TC: self.calcsatpropT(convert_temperature( TC, Out_Unit = 'K' ))[0] - P Tsat = brentq(funct_tsat, 0, convert_temperature( Tc, Out_Unit = 'C' ), xtol=btxtol, maxiter = itermx) + 273.15 #Tsat = newton(funct_tsat, Tsat, fprime=None, args=(), tol=btxtol, maxiter=itermx, fprime2=None) # Calculate liquid and vapor densities [_, rhosl, rhosv] = self.calcsatpropT(Tsat) return Tsat, rhosl, rhosv
[docs] def fluidDescriptor(self, P, TK, *rho): """ This function calculates the appropriate description of the H2O fluid at any given temperature and pressure \n A problem may occur if the pressure is equal or nearly equal to the saturation pressure. Here comparing the pressure with the saturation pressure pressure may lead to the wrong description, as vapor and liquid coexist at the saturation pressure. It then becomes neccesary to compare the fluid density with the saturated vapor and saturated liquid densities. If the density is known, it will be used. If it is not known, the results obtained here will determine the starting density estimate, thus in essence choosing "vapor" or "liquid" for pressures close to the saturation pressure. \n Parameters: ---------- P pressure [bar] \n TK temperature [K] \n rho density [kg/m3] (optional) \n Returns: ---------- phase fluid description \n rhosl liquid density [kg/m3] \n rhosv vapor density [kg/m3] \n Usage: ---------- [udescr, rhosl, rhosv] = fluidDescriptor( P, TK) """ # P = P*10 # MPa to bar Tc = IAPWS95_COEFFS['Tc'] # K Pc = IAPWS95_COEFFS['Pc']*10 # convert MPa to bar # rhoc = IAPWS95_COEFFS['rhoc'] btxtol = 1e-10 rhotol = 1.0e-8 if (TK < 273.15): # Note that the allowed temperature range has been extended a bit on the low end to include 0C. phase = 'unknown' rhosv = 0; rhosl = 0 elif (TK <= Tc): # Calculate the saturation curve properties. [Psat, rhosl, rhosv] = self.calcsatpropT(TK) if (P > Pc): phase = 'compressed liquid' if Psat == np.nan: # if calcsatpropT(TK) failed, an arbitrary liquid-like density will be assigned # as a starting value for compressed liquid rhosl = 1.05 else: # if calcsatpropT(TK) failed, the vapor and liquid states cannot be distinguished # from one another. Liquid is assigned arbitrarily if Psat == np.nan: phase = 'liquid' rhosl = 1.05 else: if (P >= Psat): phase = 'liquid' else: phase = 'vapor' # Use density (rho) if available and pressure is close to psat. if len(rho) != 0: Ptest = (P - Psat)/Psat btest = 10*btxtol if (abs(Ptest) <= btest): # Here press is very close to psat. Use rho to determine vapor or liquid. rtestl = (rho - rhosl)/rhosl rtestv = (rho - rhosv)/rhosv if (abs(rtestl) <= rhotol): phase = 'liquid' elif (abs(rtestv) <= rhotol): phase = 'vapor' else: phase = 'unknown' else: rhosv = 0; rhosl = 0 if (P > Pc): phase = 'supercritical fluid' else: phase = 'hot vapor' return phase, rhosl, rhosv
[docs] def calcwaterppt(self, TC, P, *rho0, FullEOSppt = False): """ This function evaluates thermodynamic properties of water at given temperature and pressure. The problem reduces to finding the value of density that is consistent with the desired pressure. The Newton-Raphson method is employed. Small negative values of calculated pressure are okay. Zero or negative values for calculated "pdx" (pressure derivative with respect to delta) imply the unstable zone and must be avoided. \n Parameters: ---------- T : temperature [°C] \n P : pressure [bar] \n rho0 : starting estimate of density [kg/m3] (optional) FullEOSppt: Option to output all or essential water properties [False or True] Returns: ---------- rho : density [kg/m3] \n gx : Gibbs energy [cal/mol] \n hx : Enthalpy [cal/mol] \n sx : Entropy [cal/mol/K] \n vx : Volume [m3/mol] \n Pout : pressure [bar] \n Tout : temperature [°C] \n ux : Internal energy [cal/mol] if FullEOSppt is True \n ax : Helmholtz energy [cal/mol/K] if FullEOSppt is True \n cpx : Isobaric heat capacity [cal/mol/K] if FullEOSppt is True \n Usage: ---------- [rho, gxcu, hxcu, sxcu, vxcu, uxcu, axcu, cpxcu, Pout, Tout] = calcwaterppt(T, P), \n """ if np.ndim(TC) == 0: TC = np.array(TC).ravel() else: TC = TC.ravel() if np.ndim(P) == 0: P = np.array(P).ravel() else: P = P.ravel() rho0 = rho0[0] Pout = P # cases where 'T' is used as input Tout = TC # cases where 'P' is used as input TK = convert_temperature( TC, Out_Unit = 'K' ) Ppa = P * 0.1 #Convert bars to MPa Tc = IAPWS95_COEFFS['Tc'] # K Pc = IAPWS95_COEFFS['Pc'] # MPa rhoc = IAPWS95_COEFFS['rhoc'] R = IAPWS95_COEFFS['R']*1e-3 #KJ/(kg*K) # if len(rho0) != 0: # itermx = 80 # else: # itermx = 100 # btxtol = 1.0e-8 # Obtain a description (udescr) of the H2O fluid. rho = np.zeros(len(TK)).ravel() for i in range(len(TK)): if (np.ndim(rho0) != 0): [phase, rhosl, rhosv] = self.fluidDescriptor(P[i], TK[i], rho0[i]) else: [phase, rhosl, rhosv] = self.fluidDescriptor(P[i], TK[i]) if (phase == 'vapor'): # Vapor: assume ideal gas behavior. rho[i] = 1000.0*Ppa[i]/(TK[i]*R) elif (phase == 'liquid'): # Liquid: use a liquid-like density. The liquid density on the saturation curve. rho[i] = rhosl elif (phase == 'compressed liquid'): # Estimate the density of compressed liquid. The saturated liquid density is a minimum value. rho[i] = 1.10*rhosl # Close to the upper limit for this field (T near the triple point, 1000 MPa). # For higher pressure, a higher value might be needed. rho = 1250.0d0 rho[i] = np.maximum(rho[i], rhosl) rho[i] = np.minimum(rho[i], 1400) elif (phase == 'supercritical fluid'): # Estimate density of supercritical fluid. Twice the ideal gas correction to critical point density. rho[i] = 2.0*(Ppa[i]/Pc)*(Tc/TK[i])*rhoc # Close to the upper limit for this P, T field. (T near the critical point, 1000 MPa). # For higher pressure, a higher value might be needed. rho = 1100.0d0 rho[i] = np.minimum(rho[i], 1100.0) elif (phase == 'hot vapor'): # Estimate the density of hot vapor. Ideal gas. rhoidg = 1000.0*Ppa[i]/(TK[i]*R) # SUPCRT92 estimate, about 15% higher than ideal gas. rhosup = 2500.0*Ppa[i]/TK[i] # Ideal gas correction to critical point density. rhocpa = (Ppa[i]/Pc)*(Tc/TK[i])*rhoc # The upper limit for this field, the critical pressure (rhocr), 22.064 MPa. rho = rhoc if (Ppa[i] <= 1.0): rho[i] = rhoidg elif (Ppa[i] <= 18.0): rho[i] = rhosup else: rho[i] = rhocpa rho[i] = np.minimum(rho[i], rhoc) else: # If the H2O fluid type could not be determined. A good starting estimate # of density could not be established, try three times the critical density. rho[i] = 4*rhoc funct_tsat = lambda rho: self.EOSIAPWS95(TK[i], rho, FullEOSppt = FullEOSppt)[0] - P[i] rho[i] = fsolve(funct_tsat, rho[i]) if FullEOSppt == True: [Px, ax, sx, hx, gx, vx, _, _, _, _, _, _, ux, _, _, _, _, cpx, _, _] = self.vEOSIAPWS95(TK, rho, FullEOSppt = FullEOSppt) else: [Px, ax, sx, hx, gx, vx, _, _, _, _, _, _] = self.vEOSIAPWS95(TK, rho, FullEOSppt = FullEOSppt) # The following reference state data are in kilogram units. ds = 3.5156150 # Entropy (kJ/kg/K) du = -15767.19391 # Internal energy (kJ/kg) dh = -15970.89538 # Enthalpy (kJ/kg) da = -11906.84446 # Helmholtz energy (kJ/kg-K) dg = -12110.54592 # Gibbs energy (kJ/kg) htripl = 0.000611782 # tripple point Enthalpy (kJ/kg) mwH2O = 18.01528/1000 # kg/mol # Calculate the entropy, internal energy, enthalpy, Helmholtz energy, and Gibbs energy # on the standard thermochemical scale, and volume, heat capacity at constant volume. # Results are converted from KJ and kilogram units to cal and molar units. sxcu = sx + ds if FullEOSppt == True: uxcu = mwH2O*(ux + du)*1000/J_to_cal axcu = mwH2O*(ux - TK*sxcu + da)*1000/J_to_cal cpxcu = mwH2O*cpx*1000/J_to_cal hxcu = mwH2O*(hx - htripl + dh)*1000/J_to_cal gxcu = mwH2O*(hx - TK*sxcu + dg)*1000/J_to_cal vxcu = mwH2O*vx*1000/J_to_cal sxcu = mwH2O*(sx + ds)*1000/J_to_cal if FullEOSppt == True: return rho, gxcu, hxcu, sxcu, vxcu, Pout, Tout, uxcu, axcu, cpxcu else: return rho, gxcu, hxcu, sxcu, vxcu, Pout, Tout
[docs] def calcwaterppt_Prho(self, P, rho, FullEOSppt = False): """ This function evaluates thermodynamic properties of water at given density and pressure. The problem reduces to finding the value of temperature that is consistent with the desired pressure. \n Parameters: ---------- P : pressure [bar] \n rho : density [kg/m3] \n FullEOSppt: Option to output all or essential water properties [False or True] Returns: ---------- rho : density [kg/m3] \n gx : Gibbs energy [cal/mol] \n hx : Enthalpy [cal/mol] \n sx : Entropy [cal/mol/K] \n vx : Volume [m3/mol] \n Pout : pressure [bar] \n Tout : temperature [°C] \n ux : Internal energy [cal/mol] if FullEOSppt is True \n ax : Helmholtz energy [cal/mol/K] if FullEOSppt is True \n cpx : Isobaric heat capacity [cal/mol/K] if FullEOSppt is True \n Usage: ---------- [rho, gxcu, hxcu, sxcu, vxcu, uxcu, axcu, cpxcu, Pout, Tout] = calcwaterppt_Prho(P, rho), \n """ if np.ndim(rho) == 0: rho = np.array(rho).ravel() else: rho = rho.ravel() if np.ndim(P) == 0: P = np.array(P).ravel() else: P = P.ravel() Tc = IAPWS95_COEFFS['Tc'] # K Pc = IAPWS95_COEFFS['Pc']*10 # bar TK = np.zeros([len(P), 1]).ravel() for i in range(len(P)): if P[i] > Pc: TK[i] = Tc else: TK[i] = self.calcsatpropP(P[i])[0] funct_tsat = lambda TK: self.EOSIAPWS95(TK, rho[i])[0] - P[i] TK[i] = fsolve(funct_tsat, TK[i]) Pout = P; Tout = convert_temperature( TK, Out_Unit = 'C' ) if FullEOSppt == True: [Px, ax, sx, hx, gx, vx, _, _, _, _, _, _, ux, _, _, _, _, cpx, _, _] = self.vEOSIAPWS95(TK, rho, FullEOSppt = FullEOSppt) else: [Px, ax, sx, hx, gx, vx, _, _, _, _, _, _] = self.vEOSIAPWS95(TK, rho, FullEOSppt = FullEOSppt) # The following reference state data are in kilogram units. ds = 3.5156150 # Entropy (kJ/kg/K) du = -15767.19391 # Internal energy (kJ/kg) dh = -15970.89538 # Enthalpy (kJ/kg) da = -11906.84446 # Helmholtz energy (kJ/kg-K) dg = -12110.54592 # Gibbs energy (kJ/kg) htripl = 0.000611782 # tripple point Enthalpy (kJ/kg) mwH2O = 18.01528/1000 # kg/mol # Calculate the entropy, internal energy, enthalpy, Helmholtz energy, and Gibbs energy # on the standard thermochemical scale, and volume, heat capacity at constant volume. # Results are converted from KJ and kilogram units to cal and molar units. sxcu = sx + ds if FullEOSppt == True: uxcu = mwH2O*(ux + du)*1000/J_to_cal axcu = mwH2O*(ux - TK*sxcu + da)*1000/J_to_cal cpxcu = mwH2O*cpx*1000/J_to_cal gxcu = mwH2O*(hx - TK*sxcu + dg)*1000/J_to_cal hxcu = mwH2O*(hx - htripl + dh)*1000/J_to_cal vxcu = mwH2O*vx*1000/J_to_cal sxcu = mwH2O*(sx + ds)*1000/J_to_cal if FullEOSppt == True: return rho, gxcu, hxcu, sxcu, vxcu, Pout, Tout, uxcu, axcu, cpxcu else: return rho, gxcu, hxcu, sxcu, vxcu, Pout, Tout
[docs] def calcwaterstdppt(self, TK, hx, sx, vx, ux = None, cpx = None, Out_Unit = 'standard'): """ This function converts thermodynamic properties of water from kilogram units to standard thermochemical scale (calorie units) and vice-versa. \n Parameters: ---------- TK : temperature [K] \n hx : Enthalpy [kJ/kg] or [cal/mol] \n sx : Entropy [kJ/kg/K] or [cal/mol/K] \n vx : Volume [m3/kg] or [m3/mol] \n ux : Internal energy [kJ/kg] or [cal/mol] \n cpx : Isobaric heat capacity [kJ/kg/K] or [cal/mol/K] \n Returns: ---------- gx : Gibbs energy [kJ/kg] or [cal/mol] \n hx : Enthalpy [kJ/kg] or [cal/mol] \n sx : Entropy [kJ/kg/K] or[cal/mol/K] \n vx : Volume [m3/kg] or[m3/mol] \n ax : Helmholtz energy [kJ/kg/K] or[cal/mol/K] \n ux : Internal energy [kJ/kg] or [cal/mol] \n cpx : Isobaric heat capacity [kJ/kg/K] or[cal/mol/K] \n Usage: ---------- [gx, hx, sx, vx, ux, ax, cpx] = calcwaterstdppt(TK, hx, sx, vx, ux, cpx, Out_Unit = 'kilogram') \n """ # The following reference state data are in kilogram units. ds = 3.5156150 # Entropy (kJ/kg/K) du = -15767.19391 # Internal energy (kJ/kg) dh = -15970.89538 # Enthalpy (kJ/kg) da = -11906.84446 # Helmholtz energy (kJ/kg-K) dg = -12110.54592 # Gibbs energy (kJ/kg) htripl = 0.000611782 # tripple point Enthalpy (kJ/kg) mwH2O = 18.01528/1000 # kg/mol #Accepted units for input and output are: unit_markers = ['kilogram', 'standard'] if not (Out_Unit in unit_markers): return None elif Out_Unit == 'standard': # Calculate the entropy, internal energy, enthalpy, Helmholtz energy, and Gibbs energy # on the standard thermochemical scale, and volume, heat capacity at constant volume. # Results are converted from KJ and kilogram units to cal and molar units. sxcu = sx + ds uxcu = mwH2O*(ux + du)*1000/J_to_cal if ux is not None else 0 hxcu = mwH2O*(hx - htripl + dh)*1000/J_to_cal axcu = mwH2O*(ux - TK*sxcu + da)*1000/J_to_cal if ux is not None else 0 gxcu = mwH2O*(hx - TK*sxcu + dg)*1000/J_to_cal vxcu = mwH2O*vx*1000/J_to_cal cpxcu = mwH2O*cpx*1000/J_to_cal if cpx is not None else 0 sxcu = mwH2O*(sx + ds)*1000/J_to_cal return gxcu, hxcu, sxcu, vxcu, axcu, uxcu, cpxcu elif Out_Unit == 'kilogram': uxcu = ux*J_to_cal/1000/mwH2O - du if ux is not None else 0 hxcu = hx*J_to_cal/1000/mwH2O - dh + htripl vxcu = vx*J_to_cal/1000/mwH2O cpxcu = cpx*J_to_cal/1000/mwH2O if cpx is not None else 0 sxcu = sx*J_to_cal/1000/mwH2O - ds axcu = ux*J_to_cal/1000/mwH2O - da + TK*(sxcu + ds) if ux is not None else 0 gxcu = hx*J_to_cal/1000/mwH2O - dg + TK*(sxcu + ds) return gxcu, hxcu, sxcu, vxcu, axcu, uxcu, cpxcu
[docs]class iapws95: """ Implementation of IAPWS Formulation 1995 for ordinary water substance, revised release of 2016 Notes ------ Temperature and Pressure input limits * -22 ≤ TC ≤ 1000 and 0 ≤ P ≤ 100,000 Parameters ---------- T : float, vector Temperature [°C] \n P : float, vector Pressure [bar] \n rho : float, vector Density [kg/m³] \n rho0 : float, vector Starting estimate of density [kg/m³] \n rhom : float, vector Molar density [kg/m³] \n delta : float, vector Reduced density, rho/rhoc \n tau : float, vector Reduced temperature, Tc/T \n v : float, vector Specific volume [m³/kg] \n vm : float, vector Specific molar volume [m³/mol] \n Out_Unit : string Expected units ('standard' or 'kilogram') \n FullEOSppt : bool Option to output all or essential water properties [False or True] \n Returns ---------- The calculated instance has the following potential properties: \n rho : float, vector Density [kg/m3] \n G : float, vector Gibbs energy [cal/mol] or [kJ/kg] \n H : float, vector Enthalpy [cal/mol] or [kJ/kg] \n S : float, vector Entropy [cal/mol/K] or [kJ/kg/K] \n V : float, vector Volume [m3/mol] or [m3/kg] \n P : float, vector Pressure [bar] \n TC : float, vector Temperature [°C] \n TK : float, vector Temperature [K] \n U : float, vector Internal energy [cal/mol] or [kJ/kg] if FullEOSppt is True \n F : float, vector Helmholtz energy [cal/mol/K] or [kJ/kg-K] if FullEOSppt is True \n Cp : float, vector Isobaric heat capacity [cal/mol/K] \n rhosl : float, vector Density of liquid [kg/m3] \n rhosv : float, vector Density of vapor [kg/m3] \n pdx : float, vector Derivative of pressure with respect to delta in bar \n adx : float, vector Helmholtz energy derivative with respect to delta \n ztx : float, vector zeta value (needed to calculate viscosity) \n ptx : float, vector Derivative of pressure with respect to tau in bar \n gdx : float, vector Gibbs energy derivative [kJ/kg] if FullEOSppt is True \n ktx : float, vector Compressibility [/bar] \n avx : float, vector Thermal expansion coefficient (thermal expansivity) \n mu : float, vector viscosity [Pa-s] if FullEOSppt is True \n bsx : float, vector Isentropic temperature-pressure coefficient [K-m3/kJ] if FullEOSppt is True \n dtx : float, vector Isothermal throttling coefficient [kJ/kg/bar] if FullEOSppt is True \n mux : float, vector Joule-Thomsen coefficient [K-m3/kJ] if FullEOSppt is True \n cvx : float, vector Isochoric heat capacity [kJ/kg/K] if FullEOSppt is True \n wx : float, vector Speed of sound [m/s] if FullEOSppt is True Usage: ---------- The general usage of iapws95 is as follows: \n (1) For water properties at any Temperature and Pressure not on steam saturation curve: \n water = iapws95(T = T, P = P), \n where T is temperature in celsius and P is pressure in bar (2) For water properties at any Temperature and Pressure on steam saturation curve: \n water = iapws95(T = T, P = 'T'), \n where T is temperature in celsius, followed with a quoted character 'T' to reflect steam saturation pressure \n water = iapws95(T = 'P', P = P), \n where P is pressure in bar, followed with a quoted character 'P' to reflect steam saturation temperature (3) For water properties at any Temperature and density : \n water = iapws95(T = T, rho = rho), \n where T is temperature in celsius and rho is density in kg/m³ (4) For water properties at any Pressure and density : \n water = iapws95(P = P, rho = rho), \n where P is pressure in bar and rho is density in kg/m³ (5) For water saturation properties at any saturation Temperature : \n water = iapws95(T = T), \n where T is temperature in celsius (6) For water saturation properties at any saturation Pressure : \n water = iapws95(P = P), \n where P is pressure in bar Examples -------- >>> water = iapws95(T = 200., P = 50, FullEOSppt = True) >>> water.rho, water.G, water.H, water.S, water.V, water.P, water.T, water.mu 867.2595, -60368.41787, -65091.03895, 25.14869, 4.96478e-03, 50.00000, 200.000, 0.00013546 >>> water = iapws95(T=200, rho=996.5560, Out_Unit='kilogram', FullEOSppt=True) >>> water.P, water.F, water.S, water.H, water.G, water.V, water.Cp, water.pdx 2872.063, -234.204, 2.051, 1024.747, 53.994, 1.0035e-03, 3.883, 10079.17 >>> water.adx, water.ztx, water.ptx, water.ktx, water.avx, water.mu, water.gdx 93.120, 2.189e-03, -7.348e+03, 3.205e-05, 6.809e-04, 1.914e-04, 1011.40 >>> water = iapws95(T = 350) >>> water.P, water.rhosl, water.rhosv 165.2942 574.7065 113.6056 >>> water = iapws95(P = 150) >>> water.TC, water.rhosl, water.rhosv 342.1553, 603.5179, 96.7271 References ---------- (1) Wagner, W., Pruß, A., 2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535. https://doi.org/10.1063/1.1461829 """ kwargs = {"T": None, "P": None, "rho": None, "rho0": None, 'FullEOSppt': False, "v": None, "Out_Unit": 'standard'} mwH2O = 18.015268 # g/mol def __init__(self, **kwargs): self.kwargs = iapws95.kwargs.copy() self.__checker__(**kwargs) self.__calc__(**kwargs)
[docs] def __checker__(self, **kwargs): self.kwargs.update(kwargs) """initialization """ self.TC = self.kwargs["T"] self.rho = self.kwargs["rho"] self.rho0 = self.kwargs["rho0"] self.P = self.kwargs["P"] self.Out_Unit = self.kwargs["Out_Unit"] self.FullEOSppt = self.kwargs["FullEOSppt"] # Alternative rho input if "rhom" in self.kwargs: self.kwargs["rho"] = self.kwargs["rhom"]*self.mwH2O elif "delta" in self.kwargs: self.kwargs["rho"] = self.kwargs["delta"]*IAPWS95_COEFFS['rhoc'] elif self.kwargs.get("v", 0): self.kwargs["rho"] = 1/self.kwargs["v"] elif self.kwargs.get("vm", 0): self.kwargs["rho"] = self.mwH2O/self.kwargs["vm"] # Alternative T input if "tau" in self.kwargs: self.kwargs["T"] = IAPWS95_COEFFS['Tc']/self.kwargs["tau"] if type(self.P) == str: if self.P == 'T': self.P = Dummy().vcalcsatpropT(convert_temperature( self.TC, Out_Unit = 'K' ))[0] self.P[np.isnan(self.P) | (self.P < 1)] = 1.0133 if type(self.TC) == str: if self.TC == 'P': self.TC = Dummy().vcalcsatpropP(self.P)[0] self.TC = convert_temperature( self.TC, Out_Unit = 'C' ) # convert from K to celcius if self.rho0 is not None: if np.size(self.rho0) < np.size(self.TC): self.rho0 = (self.rho0*np.ones(len(self.TC))).ravel() """Check if inputs are enough to define state""" if type(self.P) != str and type(self.TC) != str: if np.ravel(self.TC).any() and np.ravel(self.P).any(): self.mode = "T_P" if np.size(self.P) < np.size(self.TC): if np.ndim(self.P) == 0: self.P = np.ravel(self.P) self.P = (self.P[0]*np.ones(len(self.TC))).ravel() if np.size(self.TC) < np.size(self.P): if np.ndim(self.TC) == 0: self.TC = np.ravel(self.TC) self.TC = (self.TC[0]*np.ones(len(self.P))).ravel() elif np.ravel(self.TC).any() and np.ravel(self.rho).any(): self.mode = "T_rho" if np.size(self.rho) < np.size(self.TC): if np.ndim(self.rho) == 0: self.rho = np.ravel(self.rho) self.rho = (self.rho[0]*np.ones(len(self.TC))).ravel() if np.size(self.TC) < np.size(self.rho): if np.ndim(self.TC) == 0: self.TC = np.ravel(self.TC) self.TC = (self.TC[0]*np.ones(len(self.rho))).ravel() elif np.ravel(self.P).any() and np.ravel(self.rho).any(): self.mode = "P_rho" if np.size(self.P) < np.size(self.rho): if np.ndim(self.P) == 0: self.P = np.ravel(self.P) self.P = (self.P[0]*np.ones(len(self.rho))).ravel() if np.size(self.rho) < np.size(self.P): if np.ndim(self.rho) == 0: self.rho = np.ravel(self.rho) self.rho = (self.rho[0]*np.ones(len(self.P))).ravel() elif np.ravel(self.TC).any() and np.ravel(self.P).any() is None: self.mode = "T_x" elif np.ravel(self.P).any() and np.ravel(self.TC).any() is None: self.mode = "P_x" else: self.mode = "" else: if self.TC and self.P: self.mode = "T_P" self.TK = convert_temperature( self.TC, Out_Unit = 'K' ) if self.TC is not None else None
[docs] def __calc__(self, **kwargs): self.kwargs.update(kwargs) self.msg = 'Temperature and Pressure input limits: -22 ≤ TC ≤ 1000 and 0 ≤ P ≤ 100,000' if self.mode == "T_P": water = Dummy().calcwaterppt(self.TC, self.P, self.rho0, FullEOSppt = self.FullEOSppt) if self.FullEOSppt is True: [self.rho, self.G, self.H, self.S, self.V, self.P, self.TC, self.U, self.F, self.Cp] = water self.mu = Dummy().vwaterviscosity(self.TC, self.P, self.rho) else: [self.rho, self.G, self.H, self.S, self.V, self.P, self.TC] = water if self.Out_Unit.lower() == 'kilogram': if self.FullEOSppt is True: water = Dummy().calcwaterstdppt(self.TK, self.H, self.S, self.V, ux = self.U, cpx = self.Cp, Out_Unit = 'kilogram') [self.G, self.H, self.S, self.V, self.F, self.U, self.Cp] = water else: water = Dummy().calcwaterstdppt(self.TK, self.H, self.S, self.V, Out_Unit = 'kilogram') [self.G, self.H, self.S, self.V] = water[:4] elif self.mode == "T_rho": water = Dummy().vEOSIAPWS95(self.TK, self.rho, FullEOSppt = self.FullEOSppt) if self.FullEOSppt is True: [self.P, self.F, self.S, self.H, self.G, self.V, self.pdx, self.adx, self.ztx, self.ptx, self.ktx, self.avx, self.U, self.gdx, self.bsx, self.dtx, self.mux, self.Cp, self.cvx, self.wx] = water self.mu = Dummy().vwaterviscosity(self.TC, self.P, self.rho) else: [self.P, self.F, self.S, self.H, self.G, self.V, self.pdx, self.adx, self.ztx, self.ptx, self.ktx, self.avx] = water if self.Out_Unit.lower() == 'standard': if self.FullEOSppt is True: water = Dummy().calcwaterstdppt(self.TK, self.H, self.S, self.V, ux = self.U, cpx = self.Cp, Out_Unit = 'standard') [self.G, self.H, self.S, self.V, self.F, self.U, self.Cp] = water else: water = Dummy().calcwaterstdppt(self.TK, self.H, self.S, self.V, Out_Unit = 'standard') [self.G, self.H, self.S, self.V] = water[:4] elif self.mode == "P_rho": water = Dummy().calcwaterppt_Prho(self.P, self.rho, FullEOSppt = self.FullEOSppt) if self.FullEOSppt is True: [self.rho, self.G, self.H, self.S, self.V, self.P, self.TC, self.U, self.F, self.Cp] = water self.mu = Dummy().vwaterviscosity(self.TC, self.P, self.rho) else: [self.rho, self.G, self.H, self.S, self.V, self.P, self.TC] = water if self.Out_Unit.lower() == 'kilogram': if self.FullEOSppt is True: water = Dummy().calcwaterstdppt(self.TK, self.H, self.S, self.V, ux = self.U, cpx = self.Cp, Out_Unit = 'kilogram') [self.G, self.H, self.S, self.V, self.F, self.U, self.Cp] = water else: water = Dummy().calcwaterstdppt(self.TK, self.H, self.S, self.V, Out_Unit = 'kilogram') [self.G, self.H, self.S, self.V] = water[:4] elif self.mode == "P_x": water = Dummy().vcalcsatpropP(self.P) [self.TK, self.rhosl, self.rhosv] = water self.TC = convert_temperature( self.TK, Out_Unit = 'C' ) elif self.mode == "T_x": water = Dummy().vcalcsatpropT(self.TK) [self.P, self.rhosl, self.rhosv] = water elif self.mode == "": return ('For water properties at any Temperature and Pressure \n \ input T = temperature (celsius) and P = pressure (bar) \n \ For water properties at any Temperature and Pressure on steam saturation curve \n' + \ 'input T = temperature (celsius) and P = "T" to reflect steam saturation pressure \n' + \ 'For water properties at any Temperature and density \n' + \ 'input T = temperature (celsius) and rho = density (kg/m³) in kg/m³' +\ 'For water properties at any Pressure and density \n' + \ 'input P = pressure (bar) and rho = density (kg/m³) \n' + \ 'For water saturation properties at any saturation Temperature \n' + \ 'input T = temperature (celsius) \n' + \ 'For water saturation properties at any saturation Pressure \n' + \ 'P = pressure (bar)')
[docs]class ZhangDuan(): """ Implementation of Zhang & Duan model Formulation for water at higher Temperature and Pressure conditions, i.e, Deep Earth Water - DEW Notes ------ Temperature and Pressure input limits * 0 ≤ TC ≤ 1726.85 and 1000 ≤ P ≤ 300,000 Parameters ---------- T : float, vector Temperature [°C] \n P : float, vector Pressure [bar] \n rho : float, vector Density [kg/m³] \n rho0 : float, vector Starting estimate of density [kg/m³] \n densityEquation : string specify either 'ZD05' to use Zhang & Duan (2005) or 'ZD09' to use Zhang & Duan (2009) Returns ---------- The calculated instance has the following potential properties: \n rho : float, vector Density [kg/m3] \n rhohat : float, vector Density [g/cm³] \n G : float, vector Gibbs energy [cal/mol] \n drhodP_T : float, vector Partial derivative of density with respect to pressure at constant temperature \n drhodT_P : float, vector Partial derivative of density with respect to temperature at constant pressure Usage: ---------- The general usage of ZhangDuan is as follows: \n (1) For water properties at any Temperature and Pressure: \n deepearth = ZhangDuan(T = T, P = P), \n where T is temperature in celsius and P is pressure in bar (2) For water properties at any Temperature and density : \n deepearth = ZhangDuan(T = T, rho = rho), \n where T is temperature in celsius and rho is density in kg/m³ Examples -------- >>> deepearth = ZhangDuan(T = 25, P = 5000) >>> deepearth.rho, deepearth.G, deepearth.drhodP_T, deepearth.drhodT_P 1145.3065, -54631.5351, 2.3283e-05, -0.0004889 >>> deepearth = ZhangDuan(T = 200, rho = 1100) >>> deepearth.P, deepearth.G, deepearth.drhodP_T, deepearth.drhodT_P 7167.2231, -57319.0980, 2.3282e-05, -0.0005122 References ---------- (1) Zhang, Z., Duan, Z., 2005. Prediction of the PVT properties of water over wide range of temperatures and pressures from molecular dynamics simulation. Phys. Earth Planet. Inter. 149, 335–354. https://doi.org/10.1016/j.pepi.2004.11.003. (2) Zhang, C. and Duan, Z., 2009. “A model for C-O-H fluid in the Earth’s mantle”, Geochimica et Cosmochimica Acta, vol. 73, no. 7, pp. 2089–2102, doi:10.1016/j.gca.2009.01.021. (3) Sverjensky, D.A., Harrison, B., Azzolini, D., 2014. Water in the deep Earth: The dielectric constant and the solubilities of quartz and corundum to 60kb and 1200°C. Geochim. Cosmochim. Acta 129, 125–145. https://doi.org/10.1016/j.gca.2013.12.019 """ kwargs = {"T": None, "P": None, "rho": None, "rho0": 1e-5, "error": 1e-2, "densityEquation": 'ZD05'} def __init__(self, **kwargs): self.kwargs = ZhangDuan.kwargs.copy() self.__calc__(**kwargs)
[docs] def __calc__(self, **kwargs): self.kwargs.update(kwargs) self.msg = 'Temperature and Pressure input limits: 0 ≤ TC ≤ 1726.85 and 1000 ≤ P ≤ 300,000' self.TC = self.kwargs["T"] self.P = self.kwargs["P"] self.rho = self.kwargs["rho"] self.rho0 = self.kwargs["rho0"] self.method = self.kwargs["densityEquation"] self.error = self.kwargs["error"] if type(self.P) == str and np.ravel(self.TC).any(): self.mode = "T_P" elif np.ravel(self.TC).any() and np.ravel(self.P).any(): self.mode = "T_P" if np.size(self.P) < np.size(self.TC): self.P = (self.P*np.ones_like(self.TC)).ravel() if np.size(self.TC) < np.size(self.P): self.TC = (self.TC*np.ones_like(self.P)).ravel() elif np.ravel(self.TC).any() and np.ravel(self.rho).any(): self.mode = "T_rho" if np.size(self.rho) < np.size(self.TC): self.rho = (self.rho*np.ones_like(self.TC)).ravel() if np.size(self.TC) < np.size(self.rho): self.TC = (self.TC*np.ones_like(self.rho)).ravel() else: self.mode = '' if self.mode == "T_P": self.rhohat = self.ZD_Density(self.TC, self.P, method = self.method, error = self.error).ravel() self.rho = self.rhohat*1000 elif self.mode == "T_rho": self.rhohat = self.rho/1000 self.P = self.ZD_Pressure_drhodP(self.TC, self.rhohat, method = self.method)[0] self.G = self.GibbsEnergy(self.TC, self.P, method = 'VolumeIntegral').ravel() if type(self.P) != str: f_rT = lambda x: self.ZD_Density(x, self.P, method = self.method, error = 1e-4) self.drhodT_P = derivative(f_rT, self.TC, h = 0.0001).ravel() f_rP = lambda x: self.ZD_Density(self.TC, x, method = self.method, error = 1e-4) self.drhodP_T = derivative(f_rP, self.P, h = 0.0001).ravel() else: self.drhodT_P = 0; self.drhodP_T = 0 if self.mode not in ["T_P", "T_rho"]: return ('For water properties at any Temperature and Pressure \n \ input T = temperature (celsius) and P = pressure (bar) \n' + \ 'For water properties at any Temperature and density \n' + \ 'input T = temperature (celsius) and rho = density (kg/m³) in kg/m³')
[docs] def ZD_Pressure_drhodP(self, TC, rhohat, method = None): if np.ndim(TC) == 0: TC = np.array(TC).ravel() if np.ndim(rhohat) == 0: rhohat = np.array(rhohat).ravel() mwH2O = 18.01528 # 'Molar mass of water molecule in units of g/mol TK = convert_temperature(TC, Out_Unit = 'K') # 'Temperature must be converted to Kelvin P = np.zeros([len(TK), 1]); drhodP_T = np.zeros([len(TK), 1]) for k in range(len(TK)): if method == 'ZD05': ZD05_R = 83.14467 # 'Gas Constant in units of cm^3 bar/mol/K ZD05_Vc = 55.9480373 # 'Critical volume in units of cm^3/mol ZD05_Tc = 647.25 # 'Critical temperature in units of Kelvin Vr = mwH2O / rhohat[k] / ZD05_Vc Tr = TK[k] / ZD05_Tc cc = ZD05_Vc / mwH2O # 'This term appears frequently in the equation and is defined here for convenience B = 0.349824207 - 2.91046273 / (Tr**2) + 2.00914688 / (Tr**3) C = 0.112819964 + 0.748997714 / (Tr**2) - 0.87320704 / (Tr**3) D = 0.0170609505 - 0.0146355822 / (Tr**2) + 0.0579768283 / (Tr**3) E = -0.000841246372 + 0.00495186474 / (Tr**2) - 0.00916248538 / (Tr**3) F = -0.100358152 / Tr G = -0.00182674744 * Tr delta = 1 + B / Vr + C / (Vr**2) + D / Vr**4 + E / Vr**5 + (F / (Vr**2) + G / Vr**4) * np.exp(-0.0105999998 / Vr**2) P[k] = ZD05_R * TK[k] * rhohat[k] * delta / mwH2O kappa = B * cc + 2 * C * (cc**2) * rhohat[k] + 4 * D * cc**4 * rhohat[k]**3 + 5 * E * cc**5 * rhohat[k]**4 + \ (2 * F * (cc**2) * rhohat[k] + 4 * G * cc**4 * rhohat[k]**3 - (F / (Vr**2) + G / Vr**4) * (2 * 0.0105999998 * (cc**2) * rhohat[k])) * np.exp(-0.0105999998 / (Vr**2)) drhodP_T[k] = mwH2O / (ZD05_R * TK[k] * (delta + rhohat[k] * kappa)) elif method == 'ZD09': ZD09_R = 0.083145 # 'Gas constant in units of dm^3 bar/mol/K ZD09_epsilon = 510 # 'Lenard-Jones parameter in units of K ZD09_omega = 2.88 # 'Lenard-Jones parameter in units of 1E-10 m ZD09_c1 = ZD09_epsilon / (3.0626 * ZD09_omega**3) # 'Prefactor calculated from 1000 * pow(ZD09_omega / 3.691, 3) dm = pow(ZD09_omega / 3.691, 3)*1000*rhohat[k] # 'Prefactor calculated from 0.001 * pow(3.691 / ZD09_omega, 3) Vm = pow(3.691 / ZD09_omega, 3) * 0.001 * (mwH2O / rhohat[k]) # 'Prefactor calculated from 154 / ZD09_epsilon Tm = 154 / ZD09_epsilon * TK[k] B = 0.029517729893 - 6337.56452413 / (Tm**2) - 275265.428882 / (Tm**3) C = 0.00129128089283 - 145.797416153 / (Tm**2) + 76593.8947237 / (Tm**3) D = 2.58661493537E-06 + 0.52126532146 / (Tm**2) - 139.839523753 / (Tm**3) E = -2.36335007175E-08 + 0.00535026383543 / (Tm**2) - 0.27110649951 / (Tm**3) F = 25038.7836486 / (Tm**3) G = 0.73226726041 + 0.015483335997 / (Vm**2) delta = 1 + B / Vm + C / (Vm**2) + D / pow(Vm, 4) + E / pow(Vm, 5) + F / (Vm**2) * G * \ np.exp(-0.015483335997 / (Vm**2)) Pm = ZD09_R * Tm * delta / Vm P[k] = Pm * ZD09_c1 kappa = B / mwH2O + 2 * C * dm / (mwH2O**2) + 4 * D * pow(dm, 3) / pow(mwH2O, 4) + \ 5 * E * pow(dm, 4) / pow(mwH2O, 5) + (2 * F * dm / (mwH2O**2) * G + \ F / pow(Vm, 2) * (1 - G) * \ (2 * 0.015483335997 * dm / (mwH2O**2))) * \ np.exp(-0.015483335997 / (Vm**2)) drhodP_T[k] = ZD09_c1 * mwH2O / (ZD09_c1 * ZD09_R * Tm * (delta + dm * kappa)) return P, drhodP_T
[docs] def ZD_Density(self, TC, P, method = 'ZD05', error = None): if type(P) == str: if P == 'T': # 'This equation models the density of water as a function of temperature along the Psat curve. #'It has an R^2 value of 0.9999976885 as compared with Supcrt92 values. rhohat = -1.01023381581205e-104 * pow(TC, 40) + -1.1368599785953e-27 * pow(TC, 10) + \ -2.11689207168779e-11 * pow(TC, 4) + 1.26878850169523e-08 * pow(TC, 3) + \ -4.92010672693621e-06 * pow(TC, 2) + -3.2666598612692e-05 * TC + 1.00046144613017 else: if np.ndim(TC) == 0: TC = np.array(TC).ravel() if np.ndim(P) == 0: P = np.array(P).ravel() rhohat = np.zeros([len(TC), 1]) for k in range(len(TC)): #'Define variables minGuess = 0.00001 guess = self.rho0 equation = 1 if method == 'ZD05' else 2 maxGuess = 7.5 * equation - 5 #'The maxGuess is dependent on the value of "equation" calcP = 0 #'Loop through and find the density for i in range(100): #'Calculates the pressure using the specified equation calcP = self.ZD_Pressure_drhodP(TC[k], guess, method = method)[0] #'If the calculated pressure is not equal to input pressure, this determines a new #'guess for the density based on current guess and how the calculated pressure #'relates to the input pressure. In effect, this a form of a bisection method. # print('count ', i, 'rhohat', guess, 'P', calcP > P) if abs(calcP - P[k]) > error: if calcP > P[k]: maxGuess = guess guess = (guess + minGuess) / 2 # else: minGuess = guess guess = (guess + maxGuess) / 2 # else: rhohat[k] = guess break return rhohat
[docs] def GibbsEnergy(self, TC, P, method = 'VolumeIntegral'): if type(P) == str: if P == 'T': dGH2O = -2.72980941772081e-103 * pow(TC, 40) + 2.88918186300446e-25 * pow(TC, 10) +\ -2.21891314234246e-08 * pow(TC, 4) + 3.0912103873633e-05 * pow(TC, 3) +\ -3.20873264480928E-02 * pow(TC, 2) + -15.169458452209 * TC + -56289.0379433809 else: if np.ndim(TC) == 0: TC = np.array(TC).ravel() if np.ndim(P) == 0: P = np.array(P).ravel() dGH2O = np.zeros([len(TC), 1]) for k in range(len(TC)): if method == 'DH78': # 'Delaney & Helgeson (1978) equation coeff = [-56130.073, 0.38101798, -0.0000021167697, 2.0266445e-11, -8.3225572e-17, -15.285559, 0.0001375239, -1.5586868e-09, 6.6329577e-15, -0.026092451, 0.000000035988857, -2.7916588e-14, 0.000017140501, -1.6860893e-11, -6.0126987e-09] dGH2O_ = 0 Count = 0 for j in range(4): for k in range(4 - j): dGH2O_ = dGH2O_ + coeff(Count) * pow(TC[k], j) * pow(P[k], k) Count = Count + 1 dGH2O[k] = dGH2O_ elif method == 'VolumeIntegral': mwH2O = 18.01528 # 'Molar mass of water molecule in units of g/mol # 'Gibbs Free Energy of water at 1 kb. This equation is a polynomial fit to data as a function of temperature. # 'It is valid in the range of 100 to 1000 C. dGH2O_1Kb = 2.6880734e-09*TC[k]**4 + 6.3163061e-07*TC[k]**3 - 0.019372355*TC[k]**2 - 16.945093*TC[k] - 55769.287 if P[k] < 1000: # 'Simply return zero, this method only works at P >= 1000 bars integral = np.nan elif P[k] == 1000: # 'Return the value calculated above from the polynomial fit integral = 0 elif P[k] > 1000: # 'Integrate from 1 kb to P over the volume integral = 0 # 'Integral is sum of rectangles with this width. This function in effect limits the spacing # 'to 20 bars so that very small pressures do not have unreasonably small widths. Otherwise the width # 'is chosen such that there are always 500 steps in the numerical integration. This ensures that for very # 'high pressures, there are not a huge number of steps calculated which is very computationally taxing. spacing = 20 if ((P[k] - 1000) / 500 < 20) else (P[k] - 1000) / 500 for i in np.arange(1000, P[k], spacing): # 'This integral determines the density only down to an error of 100 bars # 'rather than the standard of 0.01. This is done to save computational # 'time. Tests indicate this reduces the computation by about a half while # 'introducing little error from the standard of 0.01. integral = integral + (mwH2O / self.ZD_Density(TC[k], i, error = 100) / 41.84) * spacing dGH2O[k] = dGH2O_1Kb + integral return dGH2O
[docs]class water_dielec(): """ Class Implementation of Water dielectric constants, the Debye-Huckel "A" and "B" parameters and their derivatives at ambient to deep-earth Temperature and Pressure conditions with three different formulations Parameters ---------- T : float, vector Temperature [°C] \n P : float, vector Pressure [bar] \n rho : float, vector Density [kg/m³] \n Dielec_method : string specify either 'FGL97' or 'JN91' or 'DEW' as the method to calculate dielectric constant (optional), if not specified, default - 'JN91' \n Dielec_DEWoutrange : string specify either 'FGL97' or 'JN91' as the method to calculate dielectric constant for out of range for 'DEW' method if any Returns ---------- The calculated instance has the following potential properties: E : float, vector dielectric constant of water \n rhohat : float, vector density [g/cm³] \n Ah : float, vector Debye-Huckel "A" parameters [kg^1/2 mol^-1/2] \n Bh : float, vector Debye-Huckel "B" parameters [kg^1/2 mol^-1/2 Angstrom^-1] \n bdot : float, vector bdot at any given temperature T \n Adhh : float, vector Debye-Huckel "A" parameters associated with apparent molar enthalpy \n Adhv : float, vector Debye-Huckel "A" parameters associated with apparent molar volume \n Bdhh : float, vector Debye-Huckel "B" parameters associated with apparent molar enthalpy \n Bdhv : float, vector Debye-Huckel "B" parameters associated with apparent molar volume \n dEdP_T : float, vector Partial derivative of dielectric constant with respect to pressure at constant temperature \n dEdT_P : float, vector Partial derivative of dielectric constant with respect to temperature at constant pressure Notes ------ FGL97 Temperature and Pressure input limits: * -35 ≤ TC ≤ 600 and 0 ≤ P ≤ 12000 DEW Temperature and Pressure input limits: * 100 ≤ TC ≤ 1200 and 1000 ≤ P ≤ 60000 JN91 Temperature and Pressure input limits: * 0 ≤ TC ≤ 1000 and 0 ≤ P ≤ 5000 Usage ---------- The general usage of water_dielec is as follows: \n (1) For water dielectric properties at any Temperature and Pressure: \n dielect = water_dielec(T = T, P = P, Dielec_method = 'JN91'), \n where T is temperature in celsius and P is pressure in bar (2) For water dielectric properties at any Temperature and density : \n dielect = water_dielec(T = T, rho = rho, Dielec_method = 'JN91'), \n where T is temperature in celsius and rho is density in kg/m³ (3) For water dielectric properties at any Temperature and Pressure on steam saturation curve: \n dielect = water_dielec(T = T, P = 'T', Dielec_method = 'JN91'), \n where T is temperature in celsius and P is assigned a quoted character 'T' to reflect steam saturation pressure \n dielect = water_dielec(P = P, T = 'P', Dielec_method = 'JN91'), \n where P is pressure in bar and T is assigned a quoted character 'P' to reflect steam saturation temperature Examples -------- >>> dielect = water_dielec(T = 50, P = 500, Dielec_method = 'JN91') >>> dielect.E, dielect.rhohat, dielect.Ah, dielect.Bh, dielect.bdot 71.547359, 1.00868586, 0.52131899, 0.33218072, 0.04088528 >>> dielect.Adhh, dielect.Adhv, dielect.Bdhh, dielect.Bdhv 0.64360153, 2.13119279, 15.6936832 , -14.52571678 >>> dielect.dEdP_T, dielect.dEdT_P 0.03293026, -0.32468033 >>> dielect = water_dielec(T = 200, rho = 1100, Dielec_method = 'FGL97') >>> dielect.E, dielect.rhohat, dielect.Ah, dielect.Bh, dielect.bdot 49.73131404, 1.1, 0.5302338, 0.34384714, 0.04452579 >>> dielect.Adhh, dielect.Adhv, dielect.Bdhh, dielect.Bdhv 1.21317825, 2.21165281, 28.0047878, -34.21216547 >>> dielect.dEdP_T, dielect.dEdT_P 0.01444368, -0.16864644 >>> dielect = water_dielec(T = 250, P = 5000, Dielec_method = 'DEW') >>> dielect.E, dielect.rhohat, dielect.Ah, dielect.Bh, dielect.bdot, dielect.Adhh 39.46273008, 1.0238784, 0.62248141, 0.35417088, 0.02878662, 0.80688122 >>> dielect.Adhv, dielect.Bdhh, dielect.Bdhv, dielect.dEdP_T, dielect.dEdT_P 3.13101408, 39.76402294, -35.29670957, 0.0129006 , -0.08837842 References ---------- (1) Release on the Static Dielectric Constant of Ordinary Water Substance for Temperatures from 238 K to 873 K and Pressures up to 1000 MPa" (IAPWS R8-97, 1997). (2) Fernandez D. P., Goodwin A. R. H., Lemmon E. W., Levelt Sengers J. M. H., and Williams R. C. (1997) A Formulation for the Permittivity of Water and Steam at Temperatures from 238 K to 873 K at Pressures up to 1200 MPa, including Derivatives and Debye-Hückel Coefficients. J. Phys. Chem. Ref. Data 26, 1125-1166. (3) Helgeson H. C. and Kirkham D. H. (1974) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures: II. Debye-Huckel Parameters for Activity Coefficients and Relative Partial Molal Properties. Am. J. Sci. 274, 1199-1251. (4) Johnson JW, Norton D (1991) Critical phenomena in hydrothermal systems: State, thermodynamic, electrostatic, and transport properties of H2O in the critical region. American Journal of Science 291:541-648 (5) D. A. Sverjensky, B. Harrison, and D. Azzolini, "Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 °C," Geochimica et Cosmochimica Acta, vol. 129, pp. 125–145, 2014 """ kwargs = {"T": None, "P": None, "rho": None, "Dielec_method": None, "Dielec_DEWoutrange": None} def __init__(self, **kwargs): self.kwargs = water_dielec.kwargs.copy() self.__checker__(**kwargs) self.__calc__(**kwargs)
[docs] def __checker__(self, **kwargs): self.kwargs.update(kwargs) self.TC = self.kwargs["T"] self.P = self.kwargs["P"] self.rho = self.kwargs['rho'] self.Dielec_method = 'JN91' if self.kwargs["Dielec_method"] is None else self.kwargs["Dielec_method"] self.Dielec_DEWoutrange = 'JN91' if self.kwargs["Dielec_DEWoutrange"] is None else self.kwargs["Dielec_DEWoutrange"] if (type(self.P) == str) or (type(self.TC) == str): if self.P == 'T': self.P = iapws95(T = self.TC).P self.P[np.isnan(self.P) | (self.P < 1)] = 1.0133 elif self.TC == 'P': self.TC = iapws95(P = self.P).TC if self.rho is None: self.rho = iapws95(T = self.TC, P = self.P).rho self.TK = convert_temperature( self.TC, Out_Unit = 'K' ) if self.TC is not None else 0 if np.ndim(self.TC) == 0: self.TC = np.array(self.TC).ravel() else: self.TC = self.TC.ravel() if np.ndim(self.P) == 0: self.P = np.array(self.P).ravel() else: self.P = self.P.ravel() if np.ndim(self.rho) == 0: self.rho = np.array(self.rho).ravel() else: self.rho = self.rho.ravel()
[docs] def __calc__(self, **kwargs): if self.Dielec_method.upper() == 'FGL97': self.msg = 'Temperature and Pressure input limits: -35 ≤ TC ≤ 600 and 0 ≤ P ≤ 12000 \n' waterdielec = self.dielec_FGL97(self.TC, self.rho) elif self.Dielec_method.upper() == 'JN91': self.msg = 'Temperature and Pressure input limits: 0 ≤ TC ≤ 1000 and 0 ≤ P ≤ 5000 \n' waterdielec = self.dielec_JN91(self.TC, self.rho) elif self.Dielec_method.upper() == 'DEW': self.msg = 'Temperature and Pressure input limits: 100 ≤ TC ≤ 1200 and 1000 ≤ P ≤ 60000 \n' waterdielec = self.dielec_DEW() self.E, self.rhohat, self.Ah, self.Bh, self.bdot, self.Adhh, self.Adhv, self.Bdhh, self.Bdhv, self.dEdP_T, self.dEdT_P = waterdielec
[docs] def dielec_FGL97(self, TC, rho): """ This function employs the FGL91 formulation to calculate the dielectric constant of water (E), the Debye-Huckel "A" parameters and Debye-Huckel "B" parameters (3) and their derivatives as a function of temperature and pressure \n Notes ------ Temperature and Pressure input limits: * -35 ≤ TC ≤ 600 and 0 ≤ P ≤ 12000 Parameters ---------- TC : temperature [°C] \n rho : density [kg/m3] Returns ---------- E : dielectric constant of water \n rhohat : density [g/cm³] \n Ah : Debye-Huckel "A" parameters [kg^1/2 mol^-1/2] \n Bh : Debye-Huckel "B" parameters [kg^1/2 mol^-1/2 Angstrom^-1] \n bdot : bdot at any given temperature T \n Adhh : Debye-Huckel "A" parameters associated with apparent molar enthalpy \n Adhv : Debye-Huckel "A" parameters associated with apparent molar volume \n Bdhh : Debye-Huckel "B" parameters associated with apparent molar enthalpy \n Bdhv : Debye-Huckel "B" parameters associated with apparent molar volume \n dEdP_T : Partial derivative of dielectric constant with respect to pressure at constant temperature \n dEdT_P : Partial derivative of dielectric constant with respect to temperature at constant pressure Usage ---------- [E, rhohat, Ah, Bh, bdot, Adhh, Adhv, Bdhh, Bdhv, dEdP_T, dEdT_P] = dielec_FGL97( TC, rho) References ---------- (1) Release on the Static Dielectric Constant of Ordinary Water Substance for Temperatures from 238 K to 873 K and Pressures up to 1000 MPa" (IAPWS R8-97, 1997). (2) Fernandez D. P., Goodwin A. R. H., Lemmon E. W., Levelt Sengers J. M. H., and Williams R. C. (1997) A Formulation for the Permittivity of Water and Steam at Temperatures from 238 K to 873 K at Pressures up to 1200 MPa, including Derivatives and Debye-Hückel Coefficients. J. Phys. Chem. Ref. Data 26, 1125-1166. (3) Helgeson H. C. and Kirkham D. H. (1974) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures: II. Debye-Huckel Parameters for Activity Coefficients and Relative Partial Molal Properties. Am. J. Sci. 274, 1199-1251. """ if np.ndim(TC) == 0: TC = np.array(TC).ravel() else: TC = TC.ravel() if np.ndim(rho) == 0: rho = np.array(rho).ravel() else: rho = rho.ravel() TK = convert_temperature( TC, Out_Unit = 'K' ) water = iapws95(T = TC, rho = rho) ptx, ktx, avx = water.ptx, water.ktx, water.avx ptx = ptx*0.1 # convert to MPa units ktx = ktx/0.1 # convert to /MPa units Tc = IAPWS95_COEFFS['Tc'] # K # Pc = IAPWS95_COEFFS['Pc'] # MPa rhoc = IAPWS95_COEFFS['rhoc'] # kg/m3 mwH2O = 18.01528/1000 # kg/mol R = IAPWS95_COEFFS['R']/1000*mwH2O # kJ mol-1 K-1 Nh = np.array([0.978224486826, -0.957771379375e0, 0.237511794148e0, 0.714692244396e0, -0.298217036956, -0.108863472196e0, 0.949327488264e-01, -0.980469816509e-02, 0.165167634970e-04, 0.937359795772e-04, -0.123179218720e-09, 0.196096504426e-02]) ih = np.array([1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 10]) jh = np.array([0.25, 1.0, 2.5, 1.5, 1.5, 2.5, 2.0, 2.0, 5.0, 0.5, 10.0]) Nh = Nh.reshape(-1, 1); ih = ih.reshape(-1, 1); jh = jh.reshape(-1, 1) alphammp = 1.636e-40 # Mean molecular polarizability C^2 J^-1 m^2 xmudp = 6.138e-30 # Molecular dipole moment C.m e = 1.6021773310e-19 # elementary charge e is 1.602176634 x 10^-19 coulomb (C) kB = 1.380658e-23 # Boltzmann constant k is 1.380649 x 10^-23 J K^-1 NA = 6.0221367e23 # Avogadro constant NA is 6.02214076 x 10^23 mol^-1 # expression for calculating the permittivity of free space, eps0. c = 2997924580.0 # the speed of light in classical vacuum m/s mu0 = 4.0e-07 * np.pi # the permeability of free space N Angstrom^-2 rhom = rho/mwH2O # molar density mol/m3 rhocrm = rhoc/mwH2O # critical molar density mol/m3 # Get the permittivity of free space (eps0). eps0 = 1/(mu0*c^2) eps0 = 1/( mu0 * (c * 0.1)**2) # C^2 J^-1 m^-1 delta = rhom/rhocrm tau = Tc/TK # Get the Harris and Alder g factor (g). g = 1 + np.sum(Nh[:-1]*(delta**ih)*(tau**jh), 0) + Nh[-1]*delta*((TK/228) - 1)**(-1.2) # Get A and B. A = ( NA*(xmudp**2)*rhom*g )/( eps0*kB*TK ) B = ( NA*alphammp*rhom )/( 3*eps0 ) # Get the dielectric constant (E). E = ( 1 + A + 5*B + np.sqrt(9 + 2*A + 18*B + A**2 + 10*A*B + 9*B**2) )/( 4 - 4*B ) # Calculates the set of Debye-Huckel coefficients, derivatives and bdot # at given temperature T and pressure P # Debye-Huckel Agammae, Aphi and Agamma10 parameters, Units are kg^0.5 mol^-0.5 Agammae = np.sqrt(2*np.pi*NA*rho)*((e**2/( 4*np.pi*E*eps0*kB*TK ))**1.5) Agamma10 = Agammae/np.log(10) Ah = Agamma10 Aphi = Agammae/3 # Debye-Huckel B(gamma) Bh parameter, Units are kg^1/2 mol^-1/2 Angstrom^-1 kB_erg = kB * 1e7 # converts Boltzmann's constant from J K^-1 to erg K^-1. rho = rho/1000 # converts rho from kg m^-3 to g cm^-3 rhohat = rho Bh = 1.0e-08*np.sqrt((8*np.pi*NA*rho*((c*e)**2))/(1000*E*kB_erg*TK)) # Calculates bdot Ref: Helgeson H.C.,1969, American Journal of Science, Vol.267, pp:729-804 b = [0.0374e0, 1.3569e-4, 2.6411e-7, -4.6103e-9] bdot = np.where(TC>=300, 0, b[0] + b[1]*(TC-25.0) + b[2]*(TC-25.0)**2 + b[3]*(TC-25.0)**3) # Partial derivative of the g factor with respect to density at constant temperature. dgdr_T = np.sum((Nh[:-1]*ih/rhocrm)*(delta**(ih - 1))*(tau**jh), 0) + \ (Nh[11]/rhocrm)*((TK/228) - 1)**(-1.2) # Partial derivative of the g factor with respect to temperature at constant density. dgdT_r = np.sum(Nh[:-1]*(delta**ih)*jh*(tau**(jh - 1))*(-tau/TK), 0) + \ Nh[11]*delta*(-1.2*((TK/228) - 1)**(-2.2) )/228 # Partial derivative of A with respect to density. A1 = (A/rhom) + (A/g)*dgdr_T # Partial derivative of A with respect to temperature. A2 = -(A/TK) + (A/g)*dgdT_r # Partial derivative of B with respect to density. B1 = B/rhom C = 9 + 2*A + 18*B + A**2 + 10*A*B + 9*B**2 # Partial derivative of E with respect to density at constant temperature. dEdr_T = (4*B1*E/(4 - 4*B)) + (A1 + 5*B1 + 0.5*C**(-0.5)*\ (2*A1 + 18*B1 + 2*A*A1 + 10*(A1*B + A*B1) + 18*B*B1))/(4 - 4*B) # Partial derivative of E with respect to temperature at constant density. dEdT_r = (A2 + 0.5*C**(-0.5)*A2*(2 + 2*A + 10*B))/(4 - 4*B) # Partial derivative of density with respect to Pressure at constant temperature using the compressibility (ktx) drdP_T = rhom*ktx # Partial derivative of E with respect to Pressure at constant temperature dEdP_T = dEdr_T*drdP_T # Partial derivative of Pressure with respect to temperature at constant density # using "ptx" which is the partial derivative of Pressure with respect to tau dPdT_r = -tau*ptx/TK # Partial derivative of E with respect to temperature at constant Pressure dEdT_P = dEdT_r - dEdr_T*dPdT_r*drdP_T # Debye-Huckel AV constant. Units are cm^3 kg^1/2 mol^-3/2 # Multiply RT in kJ mol^-1 by 1000 to get R in cm^3 MPa mol^-1 Adhv = 2*Aphi*1000*R*TK*( (3*dEdP_T/E) - ktx ) # Debye-Huckel AH constant. Units are kJ kg^1/2 mol^-3/2. # AH/RT are kg^1/2 mol^-1/2 Ahrt = -6*Aphi*TK*((dEdT_P/E) + (1/TK) + (avx/3)) Adhh = R*TK*Ahrt # convert Adhh from kJ kg^1/2 mol^-3/2 to kcal kg^1/2 mol^-3/2 Adhh = Adhh/J_to_cal # Get the Debye-Huckel BV constant. Units are cm^3 kg^1/2 mol^-3/2 Angstrom^-1 # Multiply RT in kJ mol^-1 by 1000 to get R in cm^3 MPa mol^-1 Bdhv = 2*np.log(10)*1000*R*TK*(Bh/2)*( ktx - dEdP_T/E ) # convert Bdhv from cm^3 kg^1/2 mol^-3/2 Angstrom^-1 to cm^2 kg^1/2 mol^-3/2 10^-6 Bdhv = 100*Bdhv # Get the Debye-Huckel BH constant. Units are kJ kg^1/2 mol^-3/2 Angstrom^-1 # BH/RT parameter is expressed below as kg^1/2 mol^-1/2 Angstrom^-1. Bhrt = -2*np.log(10)*TK*(Bh/2)*((dEdT_P/E) + (1/TK) + avx ) Bdhh = R*TK*Bhrt # # convert Bdhh from kJ kg^1/2 mol^-3/2 Angstrom^-1 to cal kg^1/2 mol^-3/2 cm^-1 10^-9 Bdhh = Bdhh*1000/J_to_cal*0.10 # E, rhohat, Ah, Bh, bdot, Adhh, Adhv, Bdhh, Bdhv, dEdP_T, dEdT_P, dEdT_r, dEdr_T, drdP_T return E, rhohat, Ah, Bh, bdot, Adhh, Adhv, Bdhh, Bdhv, dEdP_T, dEdT_P
[docs] def dielec_JN91(self, TC, rho): """ This dielec_JN91 implementation employs the JN91 formulation to calculate the dielectric properties of water and steam, the Debye-Huckel "A" parameters and Debye-Huckel "B" parameters and their derivatives Notes ------ Temperature and Pressure input limits: * 0 ≤ TC ≤ 1000 and 0 ≤ P ≤ 5000 Parameters ---------- TC : temperature [°C] \n rho : density [kg/m3] Returns ---------- E : dielectric constant of water \n rhohat : density [g/cm³] \n Ah : Debye-Huckel "A" parameters [kg^1/2 mol^-1/2] \n Bh : Debye-Huckel "B" parameters [kg^1/2 mol^-1/2 Angstrom^-1] \n bdot : bdot at any given temperature T \n Adhh : Debye-Huckel "A" parameters associated with apparent molar enthalpy \n Adhv : Debye-Huckel "A" parameters associated with apparent molar volume \n Bdhh : Debye-Huckel "B" parameters associated with apparent molar enthalpy \n Bdhv : Debye-Huckel "B" parameters associated with apparent molar volume \n dEdP_T : Partial derivative of dielectric constant with respect to pressure at constant temperature \n dEdT_P : Partial derivative of dielectric constant with respect to temperature at constant pressure Usage ---------- [E, rhohat, Ah, Bh, bdot, Adhh, Adhv, Bdhh, Bdhv, dEdP_T, dEdT_P] = dielec_JN91( TC, rho) References ---------- (1) Johnson JW, Norton D (1991) Critical phenomena in hydrothermal systems: State, thermodynamic, electrostatic, and transport properties of H2O in the critical region. American Journal of Science 291:541-648 (2) Helgeson H. C. and Kirkham D. H. (1974) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures: II. Debye-Huckel Parameters for Activity Coefficients and Relative Partial Molal Properties. Am. J. Sci. 274, 1199-1251. """ if np.ndim(TC) == 0: TC = np.array(TC).ravel() else: TC = TC.ravel() if np.ndim(rho) == 0: rho = np.array(rho).ravel() else: rho = rho.ravel() TK = convert_temperature( TC, Out_Unit = 'K' ) Tr = 298.15 #K mwH2O = 18.01528/1000 # kg/mol R = IAPWS95_COEFFS['R']/1000* mwH2O # kJ mol-1 K-1 # Convert density to dimensionless g/cm3 rhohat = rho/1000 #g/cm^3 # Dielectric constant of water calculation. Johnson et al 1992- SUPCRT92 ae = [0.1470333593*100, 0.2128462733*1000, -0.1154445173*1000, 0.1955210915*100, -0.8330347980*100, 0.3213240048*100, -0.6694098645*10, -0.3786202045*100, 0.6887359646*100, -0.2729401652*100] # Dielectric constants from UEMATSU and FRANCK # ae = [7.62571, 2.44003E2, -1.40569E2, 2.77841E1, -9.62805E1, # 4.17909E1, -1.02099E1, -4.52059E1, 8.46395E1, -3.58644] That = TK/Tr k = [0]*5 k[0] = [1]*len(That) k[1] = ae[0]/That k[2] = ae[1]/That + ae[2] + ae[3]*That k[3] = ae[4]/That + ae[5]*That + ae[6]*That**2 k[4] = ae[7]*That**(-2) + ae[8]/That + ae[9] # E = ((k[0]*rhohat**0)+(k[1]*rhohat**1)+(k[2]*rhohat**2)+(k[3]*rhohat**3)+(k[4]*rhohat**4)) E = np.zeros(np.size(TK)) for a in range(len(E)): for b in range(5): E[a] = E[a] + k[b][a]*rhohat[a]**b Ar, Br = 1.8248292380e6, 50.291586490 Ah = Ar*np.sqrt(rhohat)/(E*TK*np.sqrt(E*TK)) Bh = Br*np.sqrt(rhohat)/np.sqrt(E*TK) b = [0.0374e0, 1.3569e-4, 2.6411e-7, -4.6103e-9] bdot = np.where(TC>=300, 0, b[0] + b[1]*(TC-25.0) + b[2]*(TC-25.0)**2 + b[3]*(TC-25.0)**3) water = iapws95(T = TC, rho = rho) ptx, ktx, avx = water.ptx, water.ktx, water.avx ptx = ptx*0.1 # convert to MPa units ktx = ktx/0.1 # convert to /MPa units Aphi = Ah*np.log(10)/3 dkdT = [0]*5 dkdT[0] = [0]*len(That) dkdT[1] = -ae[0]*Tr/TK**2 dkdT[2] = -ae[1]*Tr/TK**2 + ae[3]/Tr dkdT[3] = -ae[4]*Tr/TK**2 + ae[5]/Tr + 2*ae[6]*TK/Tr**2 dkdT[4] = -2*ae[7]*Tr**2/TK**3 - ae[8]*Tr/TK**2 # Partial derivative of E with respect to Pressure at constant temperature dEdP_T = np.zeros(np.size(TK)) for a in range(len(E)): for b in range(5): dEdP_T[a] = dEdP_T[a] + b*k[b][a]*rhohat[a]**b dEdP_T = dEdP_T*ktx # Partial derivative of E with respect to temperature at constant Pressure dEdT_P = np.zeros(np.size(TK)) for a in range(len(E)): for b in range(5): dEdT_P[a] = dEdT_P[a] + rhohat[a]**b*(dkdT[b][a] - b*avx[a]*k[b][a]) # Debye-Huckel AV constant. Units are cm^3 kg^1/2 mol^-3/2 # Multiply RT in kJ mol^-1 by 1000 to get R in cm^3 MPa mol^-1 Adhv = 2*Aphi*1000*R*TK*( (3*dEdP_T/E) - ktx ) # Debye-Huckel AH constant. Units are kJ kg^1/2 mol^-3/2. # AH/RT are kg^1/2 mol^-1/2 Ahrt = -6*Aphi*TK*((dEdT_P/E) + (1/TK) + (avx/3)) Adhh = R*TK*Ahrt # convert Adhh from kJ kg^1/2 mol^-3/2 to kcal kg^1/2 mol^-3/2 Adhh = Adhh/J_to_cal # Get the Debye-Huckel BV constant. Units are cm^3 kg^1/2 mol^-3/2 Angstrom^-1 # Multiply RT in kJ mol^-1 by 1000 to get R in cm^3 MPa mol^-1 Bdhv = 2*np.log(10)*1000*R*TK*(Bh/2)*( ktx - dEdP_T/E ) # convert Bdhv from cm^3 kg^1/2 mol^-3/2 Angstrom^-1 to cm^2 kg^1/2 mol^-3/2 10^-6 Bdhv = 100*Bdhv # Get the Debye-Huckel BH constant. Units are kJ kg^1/2 mol^-3/2 Angstrom^-1 # BH/RT parameter is expressed below as kg^1/2 mol^-1/2 Angstrom^-1. Bhrt = -2*np.log(10)*TK*(Bh/2)*((dEdT_P/E) + (1/TK) + avx ) Bdhh = R*TK*Bhrt # # convert Bdhh from kJ kg^1/2 mol^-3/2 Angstrom^-1 to cal kg^1/2 mol^-3/2 cm^-1 10^-9 Bdhh = Bdhh*1000/J_to_cal*0.10 return E, rhohat, Ah, Bh, bdot, Adhh, Adhv, Bdhh, Bdhv, dEdP_T, dEdT_P
[docs] def dielec_DEW(self): """ This watercalc implementation employs the DEW formulation embedded in Sverjensky et al. (2014) to calculate the dielectric properties of water and steam, the Debye-Huckel "A" parameters and Debye-Huckel "B" parameters and their derivatives. This function has been set up to use either Johnson and Norton (1991) or Fernandez et al. (1997) formulation below 5000 bar and Sverjensky et al. (2014) formulation above 5000 bar. Notes ------ Temperature and Pressure input limits: * 100 ≤ TC ≤ 1200 and 1000 ≤ P ≤ 60000 Parameters ---------- TC : temperature [°C] \n P : pressure [bar] Returns ---------- E : dielectric constant of water \n rhohat : density [g/cm³] \n Ah : Debye-Huckel "A" parameters [kg^1/2 mol^-1/2] \n Bh : Debye-Huckel "B" parameters [kg^1/2 mol^-1/2 Angstrom^-1] \n bdot : bdot at any given temperature T \n Adhh : Debye-Huckel "A" parameters associated with apparent molar enthalpy \n Adhv : Debye-Huckel "A" parameters associated with apparent molar volume \n Bdhh : Debye-Huckel "B" parameters associated with apparent molar enthalpy \n Bdhv : Debye-Huckel "B" parameters associated with apparent molar volume \n dEdP_T : Partial derivative of dielectric constant with respect to pressure at constant temperature \n dEdT_P : Partial derivative of dielectric constant with respect to temperature at constant pressure Usage ---------- [E, rhohat, Ah, Bh, bdot, Adhh, Adhv, Bdhh, Bdhv, dEdP_T, dEdT_P] = dielec_DEW() References ---------- (1) D. A. Sverjensky, B. Harrison, and D. Azzolini, "Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 °C," Geochimica et Cosmochimica Acta, vol. 129, pp. 125–145, 2014 (2) Helgeson H. C. and Kirkham D. H. (1974) Theoretical Prediction of the Thermodynamic Behavior of Aqueous Electrolytes at High Pressures and Temperatures: II. Debye-Huckel Parameters for Activity Coefficients and Relative Partial Molal Properties. Am. J. Sci. 274, 1199-1251. """ TC = self.TC; P = self.P; Dielec_DEWoutrange = self.Dielec_DEWoutrange TK = self.TK mwH2O = 18.01528/1000 # kg/mol R = IAPWS95_COEFFS['R']/1000* mwH2O # kJ mol-1 K-1 def rho_dielectric(TC, P, Dielec_method = 'JN91'): deepearth = ZhangDuan(T = TC, P = P) #[rho, dGH2O, drdP_T, drdT_P] = drdT_P = deepearth.drhodT_P drdP_T = deepearth.drhodP_T/0.1 # g cm^-3 MPa^-1 # Convert density to dimensionless g/cm3 # rhohat = deepearth.rho/1000 # g/cm^3 # Power Function - Created by Dimitri Sverjensky and Brandon Harrison a = [-0.00157637700752506, 0.0681028783422197, 0.754875480393944] b = [-8.01665106535394E-05, -0.0687161761831994, 4.74797272182151] A = a[0] * TC + a[1] * np.sqrt(TC) + a[2] B = b[0] * TC + b[1] * np.sqrt(TC) + b[2] # Sverjensky et al. (2014) is used for P > 1000 bars and the JN91 or FGL97 Equation for # P ≤ 1000 bar to calculate the Dielectric Constant. E = np.zeros(len(TC)); dEdP_T = np.zeros(len(TC)); dEdT_P = np.zeros(len(TC)); for i, j in enumerate(TC): if (P[i] < 1000) & (j < 100): # deepearth_P = DEW(T = j, rho = deepearth.rho[i]).P.ravel() if Dielec_method.upper() == 'FGL97': [E[i], _, _, _, _, _, _, _, _, dEdP_T[i], dEdT_P[i]] = self.dielec_FGL97(j, deepearth.rho[i]) elif Dielec_method.upper() == 'JN91': [E[i], _, _, _, _, _, _, _, _, dEdP_T[i], dEdT_P[i]] = self.dielec_JN91(j, deepearth.rho[i]) else: E[i] = np.exp(B[i]) * deepearth.rhohat[i] ** A[i] dEdr_T = A[i] * np.exp(B[i]) * deepearth.rhohat[i] ** (A[i] - 1) # Partial derivative of E with respect to Pressure at constant temperature dEdP_T[i] = dEdr_T*drdP_T[i] # unit is /MPa return E, deepearth.rhohat, drdP_T, drdT_P, dEdP_T #.ravel() E, rhohat, drdP_T, drdT_P, dEdP_T = rho_dielectric(TC, P, Dielec_method = Dielec_DEWoutrange) Ar, Br = 1.8248292380e6, 50.291586490 Ah = Ar*np.sqrt(rhohat)/(E*TK*np.sqrt(E*TK)) Bh = Br*np.sqrt(rhohat)/np.sqrt(E*TK) b = [0.0374e0, 1.3569e-4, 2.6411e-7, -4.6103e-9] bdot = np.where(TC>=300, 0, b[0] + b[1]*(TC-25.0) + b[2]*(TC-25.0)**2 + b[3]*(TC-25.0)**3) Aphi = Ah*np.log(10)/3 # Partial derivative of E with respect to temperature at constant Pressure f_ET = lambda x : rho_dielectric(x, P)[0] dEdT_P = derivative(f_ET, TC, h = 0.0001) # Debye-Huckel AV constant. Units are cm^3 kg^1/2 mol^-3/2 # Multiply RT in kJ mol^-1 by 1000 to get R in cm^3 MPa mol^-1 Adhv = 2*Aphi*1000*R*TK*( (3*dEdP_T/E) - drdP_T/rhohat ) # Debye-Huckel AH constant. Units are kJ kg^1/2 mol^-3/2. # AH/RT are kg^1/2 mol^-1/2 Ahrt = -6*Aphi*TK*((dEdT_P/E) + (1/TK) - (drdT_P/rhohat/3)) Adhh = R*TK*Ahrt # convert Adhh from kJ kg^1/2 mol^-3/2 to kcal kg^1/2 mol^-3/2 Adhh = Adhh/J_to_cal # Get the Debye-Huckel BV constant. Units are cm^3 kg^1/2 mol^-3/2 Angstrom^-1 # Multiply RT in kJ mol^-1 by 1000 to get R in cm^3 MPa mol^-1 Bdhv = 2*np.log(10)*1000*R*TK*(Bh/2)*( drdP_T/rhohat - dEdP_T/E ) # convert Bdhv from cm^3 kg^1/2 mol^-3/2 Angstrom^-1 to cm^2 kg^1/2 mol^-3/2 10^-6 Bdhv = 100*Bdhv # Get the Debye-Huckel BH constant. Units are kJ kg^1/2 mol^-3/2 Angstrom^-1 # BH/RT parameter is expressed below as kg^1/2 mol^-1/2 Angstrom^-1. Bhrt = -2*np.log(10)*TK*(Bh/2)*((dEdT_P/E) + (1/TK) + (drdT_P/rhohat) ) Bdhh = R*TK*Bhrt # # convert Bdhh from kJ kg^1/2 mol^-3/2 Angstrom^-1 to cal kg^1/2 mol^-3/2 cm^-1 10^-9 Bdhh = Bdhh*1000/J_to_cal*0.10 # E, rhohat, Ah, Bh, bdot, Adhh, Adhv, Bdhh, Bdhv, dEdP_T, dEdT_P, dEdT_r, dEdr_T, drdP_T return E, rhohat, Ah, Bh, bdot, Adhh, Adhv, Bdhh, Bdhv, dEdP_T, dEdT_P